
2-GROUP BELYI MAPS

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Mathematics

by Michael James Musty

Guarini School of Graduate and Advanced Studies

DARTMOUTH COLLEGE

Hanover, New Hampshire

July 9, 2019

Examining Committee:

John Voight, Chair

Thomas Shemanske

Carl Pomerance

David P. Roberts

F. Jon Kull, Ph.D.
Dean of the Guarini School of Graduate and Advanced Studies

Abstract

This thesis concerns the explicit computation of Galois Belyi maps φ : X → P1 with

monodromy group a 2-group, which we call 2-group Belyi maps. The computation has

two parts. The first is a combinatorial computation to enumerate the isomorphism

classes of 2-group Belyi maps. The second part is an explicit algorithm to compute

equations for the algebraic curve X and the Belyi map φ.

The motivation behind computing these maps comes from Beckmann’s theorem,

which relates the primes of bad reduction of X to the primes dividing the order of

the monodromy group of φ. Beckmann’s theorem also implies that the field of moduli

of a 2-group Belyi map is unramified away from 2. Are these moduli fields always

solvable? Is the field generated by the 2-power torsion subgroup of the Jacobian of X

solvable over Q? This work aims to provide the computational framework to begin

answering these questions.

ii

Acknowledgments

I would first like to thank my advisor, John, for his time, support, and patience. I

doubt there is anyone more passionate about math than he is, and I am just lucky

enough to be part of his tireless devotion to the cause.

Second, I would like to thank my committee (Tom, Carl, and Dave) for their

efforts towards improving this work. I would also like to thank Sam Schiavone,

Richard Foote, Edgar Costa, and Jeroen Sijsling for helpful comments.

Lastly, I would like to thank my immediate family (Mary, Jim, and Matt) and my

partner Nicole for their constant support and love.

iii

Contents

Abstract . ii

Acknowledgments . iii

1 Introduction 1

1.1 Motivation . 1

1.2 Main results . 4

1.3 Navigation . 6

2 Background on Belyi maps 7

2.1 Belyi maps and Galois Belyi maps . 7

2.2 Permutation triples and passports . 10

2.3 Triangle groups . 12

2.4 Fields of moduli and fields of definition 14

3 Group theory 16

3.1 2-groups . 16

3.2 Computing group extensions . 19

3.3 An iterative algorithm to produce generating triples 30

3.4 Results of computations . 39

iv

4 Fields of definition of 2-group Belyi maps 48

4.1 Refined passports . 48

4.2 Computing refined passports . 50

5 Computing equations 54

5.1 Quadratic extensions of number fields 54

5.2 Curves and algebraic function fields 56

5.3 Quadratic extensions of function fields 60

5.4 An algorithm over Fq . 61

5.5 An implementation over Qal . 72

5.6 Results of computations . 75

5.7 Naming conventions for database examples 76

5.8 Degree 2 . 78

5.9 Degree 4 . 78

5.10 Degree 8 . 79

5.11 Degree 16 . 82

5.12 Degree 32 . 85

6 Future work 88

6.1 Implementations . 88

6.2 Applications . 89

References 91

v

Chapter 1

Introduction

Section 1.1

Motivation

A broad goal of arithmetic geometry is to use tools from algebraic geometry to study

questions that arise in number theory. An example of this connection is a theorem

due to Belyi, which states that a nice algebraic curve X over the complex numbers

can be defined by equations with coefficients in a number field if and only if X admits

a Belyi map, a finite cover φ : X → P1 unramified outside {0, 1,∞}. The way in which

Belyi maps capture precisely when a transcendental object is also an algebraic object

is just one of the remarkable properties of these covers. The goal of this thesis is to

exploit these properties in the particular setting which we now describe.

We begin with a motivating example. Let E be an elliptic curve over Q, let ` ∈ Z

be prime, and let GQ := Gal(Qal |Q) be the absolute Galois group of Q. There is an

action of GQ on the `-torsion points E[`](Qal) ∼= Z/`Z×Z/`Z of E, which determines

1

1.1 Motivation

a 2-dimensional mod-` Galois representation

ρ : GQ → Aut(E[`]) ∼= GL2(Z/`Z). (1.1.1)

The kernel of this representation fixes the field Q(E[`]), the `-torsion field of E ob-

tained by adjoining the coordinates of all `-torsion points of E. The geometry of E

and the arithmetic of ρ are intimately related. For example, if E has good reduction

at a prime p 6= `, then p will be unramified in the field Q(E[`]) by the criterion of

Néron–Ogg-Shafarevich.

This relationship between curves and Galois representations extends to higher

genus curves. Let X be an irreducible, smooth projective curve of genus g ≥ 1 over

a number field K. The Jacobian variety of X, J := Jac(X), is an abelian variety

over K of dimension g. Again the `-torsion points J [`] of J define a mod-` Galois

representation and a number field K(J [`]). As was the case for elliptic curves, if X

has good reduction at a prime p in K, then p is unramified in the `-torsion field

K(J [`]).

The application of Belyi maps to this situation comes from Beckmann’s theorem.

To state Beckmann’s theorem requires a bit more terminology. Associated to every

Belyi map φ : X → P1 over C is the monodromy group of the covering obtained by

lifting paths around the ramification points on P1. We say that a Belyi map is Galois

if the covering is Galois (equivalently if the degree of the cover equals the size of the

monodromy group). We can now state Beckmann’s theorem.

Theorem 1.1.2 (Beckmann). Let φ : X → P1 be a Galois Belyi map with monodromy

group G and suppose p does not divide #G. Then there exists a number field M with

the following properties:

2

1.1 Motivation

• p is unramified in M ;

• the Belyi map φ is defined over M ; and

• φ and X have good reduction at all primes p of M above p.

Proof. See [1] and [20, Proposition 2.9].

If we insist that G is a 2-group in Beckmann’s theorem, then we can hope to find

fields M and M(Jac(X)[2]) unramified away from 2. The main interest in finding

such a field comes from a conjecture (now theorem) of Gross.

Conjecture 1.1.3 (Gross). For every prime p, there exists a nonsolvable Galois

number field ramified only at p.

For p ≥ 11, the existence of such fields is attributed to Serre in [38, 37] and explicit

examples are given in [30]. For p = 3, 5, the existence of such fields is proved in [16]

and an explicit example for p = 5 is given in [35]. Existence of such a field in the p = 7

case is attributed to [17] using techniques from [16] and some corrections by David

P. Roberts. For p = 2, the existence of such a field is proven in [15]. A long-term

application of the work in this thesis is to find an explicit nonsolvable number field

ramified only at 2.

But first, to use Beckmann’s theorem to construct interesting number fields, we

must have explicit Galois Belyi maps with monodromy group a 2-group. The explicit

construction of these objects is the focus of this thesis, and it is these objects we refer

to as 2-group Belyi maps. We now summarize the results of this thesis concerning

2-group Belyi maps.

3

1.2 Main results

Section 1.2

Main results

Motivated by the discussion in Section 1.1, this work aims to address the task of ex-

plicitly computing 2-group Belyi maps up to isomorphism. This computation consists

of two main parts:

• enumerating isomorphism classes,

• computing explicit equations for each isomorphism class.

Let d ∈ Z≥1. Isomorphism classes of degree d Belyi maps are in bijection with the

set of transitive permutation triples up to simultaneous conjugation in the symmetric

group Sd. A transitive permutation triple is a triple of permutations σ := (σ0, σ1, σ∞) ∈

S3
d that multiply to the identity and generate a transitive subgroup of Sd. We say

that two permutation triples σ, σ′ are simultaneously conjugate if there exists τ ∈ Sd

such that

στ := (τ−1σ0τ, τ
−1σ1τ, τ

−1σ∞τ) = (σ′0, σ
′
1, σ

′
∞) = σ′. (1.2.1)

The first main result of this thesis is an explicit algorithm (see Algorithm 3.3.28

in Section 3.3) to compute permutation triples corresponding to all 2-group Belyi

maps up to a given degree. We use this algorithm (implemented in Magma [10]) to

enumerate all such permutation triples up to conjugation for 2-power degree up to

256. The algorithms in Section 3.3 are used to prove results such as the following

theorem.

Theorem 1.2.2. The following table lists the number of isomorphism classes of per-

4

1.2 Main results

mutation triples corresponding to 2-group Belyi maps of degree d up to 256.

d 1 2 4 8 16 32 64 128 256

permutation triples 1 3 7 19 55 151 503 1799 7175
(1.2.3)

Other results of this type are detailed in Section 3.4. Having explicit permutation

triples allows us to apply techniques from [33] to obtain information about the possible

number fields that 2-group Belyi maps can be defined over. In particular, in Section

4.2, we prove the following theorem.

Theorem 1.2.4. Every 2-group Belyi map of degree d ≤ 256 is defined over a

quadratic extension of an abelian number field ramified only at 2.

Theorem 1.2.4 raises the following questions.

Question 1.2.5. Are all 2-group Belyi maps defined over solvable number fields? Is

the field generated by the 2-power torsion subgroup of the Jacobian of a 2-group Belyi

curve solvable over Q?

A first step in answering Question 1.2.5 is to compute explicit equations for 2-

group Belyi maps. The rest of the results of this thesis pertain to computing equations

of 2-group Belyi maps. The first of these is an algorithm to compute 2-group Belyi

maps over a finite field Fq where q = pk and p 6= 2 (see Section 5.4). This algorithm

has been implemented in Magma and used to construct a database of all 2-group Belyi

maps (up to isomorphism) over Fal
3 up to degree 32.

The other main result is an implementation (similar to the algorithm over Fq) in

characteristic zero (see Section 5.5). Although the characteristic zero implementation

does not succeed in all cases, it often works well in practice. In particular, the Magma

5

1.3 Navigation

implementation succeeded in computing hundreds of 2-group Belyi maps over Qal up

to degree 256.

The rest of Chapter 5 is devoted to describing the computations along with inter-

esting examples encountered along the way.

Section 1.3

Navigation

Having motivated and stated the main results, we now provide some explanation of

how this thesis is organized and where to find details pertaining to the main results.

Chapter 2 details some of the necessary background material related to Belyi

maps, permutation triples, and function fields.

Chapter 3 describes an algorithm to enumerate the isomorphism classes of 2-group

Belyi maps using permutation triples (see Algorithm 3.3.11 and Algorithm 3.3.28).

These algorithms have been used to enumerate all isomorphism classes of 2-group

Belyi maps with degree up to 256. The results of these computations are detailed in

Section 3.4.

Chapter 4 explains how the results of computations in Chapter 3 can be used to

obtain information on the possible fields of definition of 2-group Belyi maps.

Chapter 5 discusses an algorithm to compute explicit equations for 2-group Belyi

maps over finite fields with characteristic not 2 (see Algorithm 5.4.10, Algorithm

5.4.14, and Algorithm 5.4.16). Algorithm 5.5.1 describes the modifications to in

characteristic zero.

In Chapter 6 we discuss the future direction of this work.

The source code for the implementation used in this thesis can be found at [32].

6

Chapter 2

Background on Belyi maps

Section 2.1

Belyi maps and Galois Belyi maps

We now set up the framework to discuss the main mathematical objects of interest

in this work.

Definition 2.1.1. A Belyi map is a morphism φ : X → P1 of smooth projective

algebraic curves over C that is unramified outside {0, 1,∞}. We define the genus of

φ to be the genus of X.

Definition 2.1.2. Two Belyi maps φ : X → P1 and φ′ : X ′ → P1 are isomorphic if

there exists an isomorphism of curves from X to X ′ such that the diagram

X X ′

P1

∼

φ φ′
(2.1.3)

7

2.1 Belyi maps and Galois Belyi maps

commutes. If instead we only insist that the isomorphism makes a diagram

X X ′

P1 P1

∼

φ φ′

∼
β

(2.1.4)

commute, with the bottom map β satisfying β({0, 1,∞}) = {0, 1,∞}, then we say

that φ and φ′ are lax isomorphic. Note that a lax isomorphism between φ and φ′ is an

isomorphism if and only if β fixes the three points {0, 1,∞}.

Definition 2.1.5. The triple of partitions (λ0, λ1, λ∞) encoding the ramification

above 0, 1, and ∞ is called the ramification type of φ.

Let φ : X → P1 be a Belyi map of degree d. Once we label the sheets of the cover

and pick a basepoint ? 6∈ {0, 1,∞}, we obtain a homomorphism

h : π1(P1 \ {0, 1,∞}, ?)→ Sd (2.1.6)

by lifting paths around the branch points of φ.

Definition 2.1.7. The image of h in (2.1.6) is the monodromy group of φ, denoted

Mon(φ).

Definition 2.1.8. A Belyi map φ : X → P1 is defined over a number field K ⊆ C if

the defining equations of φ and X can be described by polynomial expressions with

coefficients in K. We say that K is a field of definition for φ.

Theorem 2.1.9 (Belyi’s theorem [2]). An algebraic curve X over C can be defined

over a number field if and only if X admits a Belyi map.

8

2.1 Belyi maps and Galois Belyi maps

Belyi’s theorem implies that every Belyi map can be described by a morphism

φ : X → P1 of algebraic curves defined over a number field K ⊆ C (instead of over

C). Since maps of curves correspond to function field extensions, we can consider

a Belyi map φ : X → P1 (defined over K) as equivalently given by an extension of

function fields K(X) ⊇ K(P1). Note that K(P1) is isomorphic the field of rational

functions (referred to as the rational function field of K) in one variable, say K(x),

and K(X) can be written as K(x)(α) for some primitive element α.

The degree of a Belyi map in this setting is the degree of the corresponding function

field extension K(X) over the rational function field. Ramification in this setting

corresponds to the factorization of ideals (x), (x − 1), and (1/x) in maximal orders

of K(X). The monodromy group in this setting corresponds to field automorphisms

of the Galois closure of K(X) fixing K(x).

Let Kal denote an algebraic closure of K in C.

Definition 2.1.10. A Belyi map φ : X → P1 defined over K is (geometrically) Galois

if the corresponding function field extension Kal(X) is a Galois field extension over

the rational function field Kal(x) = Kal(P1).

When φ is Galois, the ramification type of φ can be more simply encoded by

a triple of integers (a, b, c) ∈ Z3
≥1. When φ is a Galois Belyi map, we can identify

Mon(φ) in Definition 2.1.7 as the Galois group Gal(Kal(X) |Kal(P1)). For this reason,

we may also write Gal(φ) to denote Mon(φ) when φ is Galois.

We can now define the main object of interest in this thesis.

Definition 2.1.11. A 2-group Belyi map is a Galois Belyi map of degree d with

monodromy group a 2-group of order d.

For a Galois Belyi map Mon(φ) = Gal(φ) ⊆ Sd is the regular representation.

9

2.2 Permutation triples and passports

Section 2.2

Permutation triples and passports

Definition 2.2.1. A permutation triple of degree d ∈ Z≥1 is a tuple σ = (σ0, σ1, σ∞) ∈

S3
d such that σ∞σ1σ0 = 1. A permutation triple is transitive if the subgroup 〈σ〉 ≤ Sd

generated by σ is transitive. We say that two permutation triples σ, σ′ are simultane-

ously conjugate if there exists τ ∈ Sd such that

στ := (τ−1σ0τ, τ
−1σ1τ, τ

−1σ∞τ) = (σ′0, σ
′
1, σ

′
∞) = σ′. (2.2.2)

An automorphism of a permutation triple σ is an element of Sd that simultaneously

conjugates σ to itself, i.e., Aut(σ) = CSd
(〈σ〉), the centralizer inside Sd.

Lemma 2.2.3. The set of transitive permutation triples of degree d up to simultaneous

conjugation is in bijection with the set of Belyi maps of degree d up to isomorphism.

Proof. The correspondence is via monodromy [27, Lemma 1.1]; in particular, the

monodromy group of a Belyi map is (conjugate in Sd to) the group generated by σ.

The group GQ := Gal(Qal |Q) acts on Belyi maps by acting on the coefficients of

a set of defining equations; under the bijection of Lemma 2.2.3, it thereby acts on the

set of transitive permutation triples, but this action is rather mysterious. We can cut

this action down to size by identifying some basic invariants, as follows.

Definition 2.2.4. A passport consists of the data P = (g,G, λ) where g ≥ 0 is an

integer, G ≤ Sd is a transitive subgroup, and λ = (λ0, λ1, λ∞) is a tuple of partitions

λs of d for s = 0, 1,∞. These partitions will be also be thought of as a tuple of

conjugacy classes C = (C0, C1, C∞) by cycle type, so we will also write passports as

10

2.2 Permutation triples and passports

(g,G,C). Two passports (g,G,C) and (g′, G′, C ′) are equal if g = g′, C = C ′, and G

is conjugate to G′.

Definition 2.2.5. The passport of a Belyi map φ : X → P1 is

P(φ) = (g(X),Mon(φ), (λ0, λ1, λ∞)) (2.2.6)

where g(X) is the genus of X and λs is the partition of d obtained by the ramification

degrees above s = 0, 1,∞, respectively.

Definition 2.2.7. The passport of a transitive permutation triple σ is

P(σ) = (g(σ), 〈σ〉, λ(σ)) (2.2.8)

where (following Riemann–Hurwitz)

g(σ) := 1− d+ (e(σ0) + e(σ1) + e(σ∞))/2 (2.2.9)

and e is the index of a permutation (d minus the number of orbits), and λ(σ) is the

cycle type of σs for s = 0, 1,∞.

Definition 2.2.10. The size of a passport P is the number of simultaneous conjugacy

classes as in (2.2.2) of (necessarily transitive) permutation triples σ with passport P .

The action of GQ on Belyi maps preserves passports. Therefore, after computing

equations for all Belyi maps with a given passport, we can try to identify the Galois

orbits of this action.

Definition 2.2.11. We say a passport is irreducible if it has one GQ-orbit and reducible

otherwise.

11

2.3 Triangle groups

We finish this section with an observation about ramification and the Riemann-

Hurwitz formula in the case where we have a Galois Belyi map.

Lemma 2.2.12. Let σ be a degree d permutation triple corresponding to φ : X → P1,

a Galois Belyi map with monodromy group G, and let a, b, c be the orders of σ0, σ1, σ∞

respectively. Then σ0 consists of d/a many a-cycles, σ1 consists of d/b many b-cycles,

and σ∞ consists of d/c many c-cycles. In particular, for a 2-group Belyi map, a, b, c,

and #G are powers of 2.

Proof. This follows from the condition that the field extension K(X) is Galois over

the rational function field K(x). The Galois action is transitive on primes above any

prime of K(x) and in particular implies that the ramified primes all have the same

ramification index if they lie above the same prime of K(x).

Lemma 2.2.12 allows for a simplified version of the Riemann-Hurwitz formula for

Galois Belyi maps.

Theorem 2.2.13 (Riemann-Hurwitz). Let σ be a degree d permutation triple corre-

sponding to φ : X → P1, a Galois Belyi map with monodromy group G. Let a, b, c be

the orders of σ0, σ1, σ∞ respectively. Then

g(X) = 1 +
#G

2

(
1− 1

a
− 1

b
− 1

c

)
. (2.2.14)

Section 2.3

Triangle groups

Definition 2.3.1. Let (a, b, c) ∈ Z3
≥1. If 1 ∈ {a, b, c}, then we say the triple is

degenerate. Otherwise, we call the triple spherical, Euclidean, or hyperbolic according

12

2.3 Triangle groups

to whether the value of

χ(a, b, c) =
1

a
+

1

b
+

1

c
− 1 (2.3.2)

is positive, zero, or negative. We call this the geometry type of the triple. We associate

the geometry

H =

P1, if χ(a, b, c) > 0

C, if χ(a, b, c) = 0

H, if χ(a, b, c) < 0

(2.3.3)

where H denotes the complex upper half-plane.

Definition 2.3.4. For each triple (a, b, c) in Definition 2.3.1 we define the triangle

group

∆(a, b, c) = 〈δa, δb, δc | δaa = δbb = δcc = δcδbδa = 1〉 (2.3.5)

The geometry type of a triangle group ∆(a, b, c) is the geometry type of the triple

(a, b, c).

Definition 2.3.6. The geometry type of a Galois Belyi map with ramification type

(a, b, c) is the geometry type of (a, b, c).

Definition 2.3.7. Let σ = (σ0, σ1, σ∞) be a transitive permutation triple. Let a, b, c

be the orders of σ0, σ1, σ∞ respectively. The geometry type of σ is the geometry type

of (a, b, c).

The connection between Belyi maps and triangle groups of various geometry types

is explained by Lemma 2.3.8.

Lemma 2.3.8. The set of isomorphism classes of degree-d Belyi maps with ramifi-

cation type (a, b, c) is in bijection with the set of index d subgroups Γ ≤ ∆(a, b, c) up

13

2.4 Fields of moduli and fields of definition

to conjugation.

For a detailed explanation of this relationship see the first part of Section 1 in

[27].

Section 2.4

Fields of moduli and fields of definition

We now discuss the background material necessary to describe the results in Chapter

4. This section aims to define a canonical number field associated to a Belyi map

which is well-defined on isomorphism classes, bound the degree of this number field,

and discuss when a Belyi map can be defined over this field. To start let Aut(C)

denote the field automorphisms of C.

Definition 2.4.1. Let X be an algebraic curve over C. The field of moduli of X,

denoted M(X), is the fixed field of C under the subgroup of field automorphisms

{τ ∈ Aut(C) : τ(X) ' X} (2.4.2)

where τ ∈ Aut(C) acts on a set of defining equations of X.

Definition 2.4.3. Let φ : X → P1 be a Belyi map. The field of moduli of φ, denoted

M(φ), is the fixed field of C under the subgroup of field automorphisms

{τ ∈ Aut(C) : τ(φ) ' φ} (2.4.4)

where τ ∈ Aut(C) acts on a set of defining equations of φ and isomorphism is deter-

mined by Definition 2.1.2.

14

2.4 Fields of moduli and fields of definition

Recall from Definition 2.1.8 that a Belyi map φ : X → P1 is defined over a number

field K if φ and X can be defined with equations over K. We say that K is a field of

definition for φ.

Remark 2.4.5. One should think of the moduli field as the intersection of all fields of

definition. For more on fields of moduli and fields of definition see [25].

Theorem 2.4.6. Let φ : X → P1 be a Belyi map with passport P(φ). Then the degree

of M(φ) is bounded by the size of P(φ).

Proof. Let τ ∈ GQ and consider the conjugated map τ(φ) : τ(X) → P1. By [26,

Appendix] τ(φ) is a Belyi map with P(φ) = P(τ(φ)). Thus GQ acts on the set of

(isomorphism classes of) Belyi maps with a given passport. The degree of M(φ) is

bounded by the index of the stabilizer of φ in GQ under this action, and this index is

bounded by the size of P(φ).

For a general Belyi map it may not be possible to define the Belyi map over its

field of moduli. However, in the setting we are concerned with this is always possible.

Theorem 2.4.7. A Galois Belyi map can always be defined over its field of moduli.

Proof. See [13, Proposition 2.5] and [28, Theorem 2.2].

15

Chapter 3

Group theory

We begin this chapter with some background on 2-groups and group extensions which

we use to explain the algorithms in Section 3.3 on computing explicit permutation

triples corresponding to 2-group Belyi maps. We conclude the chapter with Section

3.4 where we summarize the computation of all permutation triples corresponding to

2-group Belyi maps up to degree 256. We also do some coarse data analysis of these

results.

Section 3.1

2-groups

In this section we set up some notation and summarize some background material on

2-groups all of which can be found in [18, §6.1].

Let G be a finite group. Denote the centralizer and normalizer of a subset S ⊆ G

by CG(S) and NG(S) respectively. Let G act on a set X. For x ∈ X denote the

stabilizer of x by stabx(G) and the orbit of x by orbx(G).

16

3.1 2-groups

Definition 3.1.1. Let p ∈ Z be prime. A finite group G is a p-group if the cardinality

of G is a power of p.

Lemma 3.1.2. The center of a nontrivial p-group is nontrivial.

Lemma 3.1.3. Let H be a normal subgroup of a p-group G. Let C be a conjugacy

class of G. Then either C ⊆ H or C ∩H = ∅.

Lemma 3.1.4. Let G be a p-group. Let H be a nontrivial normal subgroup of G.

Then H intersects the center Z(G) nontrivially.

Corollary 3.1.5. Let H be a normal subgroup of order p of a p-group G. Then H is

central.

Lemma 3.1.6. Let H be a normal subgroup of a p-group G. Then for every divisor

pβ of #H, H contains a subgroup Hβ, normal in G, of order pβ.

Lemma 3.1.7. Every maximal subgroup H of a p-group G has [G : H] = p and

H E G.

Definition 3.1.8. Let G be a finite group. We define a sequence of subgroups of G

iteratively as follows. Let Z0(G) = {1} and let Z1(G) = Z(G). For i ≥ 2 consider

the map

π : G→ G/Zi(G),

and define Zi+1(G) to be the preimage of the center of G/Zi(G) under π as follows.

Zi+1(G) := π−1
(
Z

(
G

Zi(G)

))

17

3.1 2-groups

Continuing this process produces a sequence of characteristic subgroups of G

Z0(G) E Z1(G) E · · · E Zi(G) E · · ·

called the upper central series of G.

Definition 3.1.9. For x, y ∈ G a finite group, define the commutator of x and y by

[x, y] := x−1y−1xy. For subgroups H,K of G define [H,K] := 〈[h, k] : h ∈ H and k ∈

K〉. We define the lower central series of G iteratively as follows. Let G0 = G, let

G1 = [G,G], and for i ≥ 1 define Gi+1 = [G,Gi].

Definition 3.1.10. A finite group G is nilpotent if the upper central series

Z0(G) E Z1(G) E · · · E Zi(G) E · · ·

has Zc(G) = G for some nonnegative integer c. The integer c is called the nilpotency

class of the nilpotent group G.

Lemma 3.1.11. A finite group G is nilpotent if and only if Gc = {1} for some

nonnegative integer c. Moreover, the smallest c such that Gc = {1} is the nilpotency

class of G and

Zi(G) ≤ Gc−i−1 ≤ Zi+1(G)

for all i ∈ {0, 1, . . . , c− 1}.

Lemma 3.1.12. Every p-group is nilpotent.

18

3.2 Computing group extensions

Section 3.2

Computing group extensions

In Section 3.3, we will be interested in constructing 2-groups as (central) extensions

of other 2-groups. The computations we rely on are implemented in Magma and

described in [9]. We now describe the broad strokes of this implementation emphasiz-

ing the particular setting we are interested in. The background material concerning

group extensions in this section is summarized from [18, §17.4].

Definition 3.2.1. Let G be a finite group and A a finite abelian group. An extension

of A by G is a group G̃ such that the sequence

1 A G̃ G 1ι π (3.2.2)

is exact. An extension (3.2.2) is central if ι(A) is contained in the center of G̃.

Note that for a group extension (3.2.2) there is an action of G on ι(A) by conju-

gation. This action is obtained by choosing a lift in G̃ and conjugating. Conjugating

ι(A) by this lift is well-defined since A is abelian. From now on we identify A with

its image ι(A) in G̃ to ease notation. To keep track of the action of G on A we make

the following definition.

Definition 3.2.3. Let G be a finite group. A G-module is a finite abelian group A

and a group homomorphism φ : G→ Aut(A).

Proposition 3.2.4. The extension in (3.2.2) is central if and only if A (identified

with its image ι(A) in G̃) has trivial G-module structure.

19

3.2 Computing group extensions

Proof. Let a ∈ A, let g ∈ G, and let g̃ ∈ π−1(g). Then g acts on a by

g · a = g̃ag̃−1, (3.2.5)

so the action is trivial if and only if a = g̃ag̃−1 for all g̃ ∈ G̃ if and only if a ∈ Z(G̃).

Definition 3.2.6. Two extensions of A by G are equivalent if there exists an isomor-

phism of groups φ making the diagram

1 A G̃1 G 1

1 A G̃2 G 1

id φ id (3.2.7)

commute.

Remark 3.2.8. The notion of equivalence from Definition 3.2.6 requires an isomor-

phism φ inducing the identity map on A and G. This definition comes from the

G-module structure of A in the sense that equivalent extensions induce (by conju-

gation) the same G-module structure on A. A weaker notion of equivalence (where

we only require φ to be any isomorphism from A to A) is useful to characterize the

groups G̃ up to group isomorphism, but will not be used in our situation.

We now look at a motivating example.

Example 3.2.9. Let A be a G-module with φ : G → Aut(A) defining the action of G

on A. Then we can construct the (external) semidirect product AoG which is the set

A×G equipped with multiplication defined by

(a1, g1)(a2, g2) := (a1 + φ(g1)(a2), g1g2).

20

3.2 Computing group extensions

Then AoG is an extension of A by G

1 A AoG G 1ι π

where the conjugation action of π−1(G) on A (identified with ι(A)) coincides with

the original G-module action of A.

We now explain the bijection between equivalence classes of extensions (of A by

G) and elements of the group H2(G,A). The latter can be efficiently computed in

Magma [9], and is a crucial part of the algorithms in Section 3.3.

Definition 3.2.10. A function s : G→ G̃ such that π ◦ s = idG is called a section of

π. A section is normalized if it maps idG to idG̃. An extension is split if there exists a

section s such that s is a homomorphism.

Proposition 3.2.11. The extension in (3.2.2) is split if and only if it is equivalent

to

1 A AoG G 1ι′ π′

where AoG is the semidirect product of G and A relative to the given action described

in Example 3.2.9.

Proof. Suppose φ : G̃ → A o G is an isomorphism inducing the identity maps on A

and G. Let s′ : G→ AoG be the section g 7→ (idA, g). Then the section s := φ−1s′ is

a group homomorphism s : G→ G̃ showing the extension is split. Conversely, assume

there exists a section s : G → G̃ which is a group homomorphism. Then the map

φ : AoG→ G̃ defined by

(a, g) 7→ ι(a)s(g)

21

3.2 Computing group extensions

is a bijection. We now show that this map is a group isomorphism by analyzing the

multiplication of two elements in the image of φ. Let ι(a)s(g) and ι(a′)s(g′) in the

image of φ. Then from the G-module structure of A we have

s(g)ι(a′) = ι(ga)s(g). (3.2.12)

(3.2.12) then implies

ι(a)s(g)ι(a′)s(g′) = ι(a)ι(ga′)s(g)s(g′) = ι(a+ ga′)s(gg′)

which is precisely the semidirect product multiplication rule on A×G.

Proposition 3.2.11 completely describes split extensions. For nonsplit extensions,

we must analyze sections that are not homomorphisms. To measure the failure of s

to be a homomorphism, we make the following definition.

Definition 3.2.13. Let s be a section of an extension (3.2.2). Let f : G×G→ A be

defined by the equation

s(g)s(h) = ι(f(g, h))s(gh). (3.2.14)

In other words, π(s(gh)) = π(s(g)s(h)) = gh, so we know that s(gh) and s(g)s(h)

differ by an element of ι(A). We define f(g, h) to be the element a ∈ A such that

(3.2.14) is satisfied. The function f is called the factor set for the extension and the

section s. A factor set is normalized if s is normalized. A normalized factor set f

satisfies

f(g, 1) = f(1, g) = 0

for all g ∈ G.

22

3.2 Computing group extensions

In Lemma 3.2.20 we will see that a factor set for an extension with a section is a

special case of a 2-cocycle which we now define.

Definition 3.2.15. A 2-cocycle is a map f : G×G→ A satisfying

f(g, h) + f(gh, k) = gf(h, k) + f(g, hk) (3.2.16)

for all g, h, k ∈ G. A 2-cocycle f is normalized if

f(g, 1) = f(1, g) = 0

for all g ∈ G.

Definition 3.2.17. A 2-coboundary is a map f : G × G → A such that there exists

f1 : G→ A satisfying

f(g, h) = gf1(h)− f1(gh) + f1(g) (3.2.18)

for all g, h ∈ G.

Definition 3.2.19. Let Z2(G,A) denote the set of 2-cocycles and B2(G,A) denote

the set of all 2-coboundaries. The second cohomology group H2(G,A) is defined by

the quotient Z2(G,A)/B2(G,A).

Lemma 3.2.20. The factor set f of an extension as in (3.2.2) and a section s is a

2-cocycle.

Lemma 3.2.21. Consider an extension as in (3.2.2). Let s and s′ be sections of

this extension with corresponding factor sets f and f ′ respectively. Then f ′ − f is a

2-coboundary.

23

3.2 Computing group extensions

Lemma 3.2.20 and Lemma 3.2.21 are explained on page 825 and 826 of [18].

Lemma 3.2.22. An equivalence class of extensions of A by G determine a unique

element of H2(G,A).

Proof. Let f be the factor set for any section of the extension. Lemma 3.2.20 shows

that f ∈ Z2(G,A). Lemma 3.2.21 shows that any other choice of f corresponding to

another choice of section differs from f by an element of B2(G,A). Thus, any single

extension of A by G determines a unique cohomology class in H2(G,A). It remains to

show that equivalent extensions determine the same element of H2(G,A). Consider

the equivalent extensions

1 A G̃1 G 1

1 A G̃2 G 1.

id

π1

φ id

π2

(3.2.23)

and let s1 : G → G̃ be a section of π1. From (3.2.23) we have that s2 := φ ◦ s1 is a

section of π2. Let f1 and f2 be the factor sets corresponding to s1 and s2 respectively

defined by

s1(g)s1(h) = f1(g, h)s1(gh)

s2(g)s2(h) = f2(g, h)s2(gh)

(3.2.24)

24

3.2 Computing group extensions

for all g, h ∈ G. Chasing through the diagram in (3.2.23) we have

s2(g)s2(h) = φ(s1(g))φ(s1(h))

= φ(s1(g)s1(h))

= φ(f1(g, h)s1(gh))

= φ(f1(g, h))φ(s1(gh))

= f1(g, h)s2(gh)

(3.2.25)

where the last equality in (3.2.25) follows from chasing the diagram through the

identity map id: A → A. This shows if two extensions are equivalent, then we can

define sections for both extensions such that the corresponding factor sets are the same

2-cocycle. In particular, equivalent extensions define the same element of H2(G,A),

which completes the proof.

Lemma 3.2.22 proves that any factor set for an extension of A by G defines a

unique class in H2(G,A). We now discuss the reverse process of constructing an

extension of A by G from a 2-cocycle.

Lemma 3.2.26. Let f ∈ H2(G,A) for some finite group G and G-module A. Then

there is an extension

1 A G̃ G 1ι π (3.2.27)

whose factor set is equivalent to f in H2(G,A).

Proof. Let G̃ be defined by the set A×G equipped with the operation

(a1, g1)(a2, g2) = (a1 + g1a2 + f(g1, g2), g1g2). (3.2.28)

25

3.2 Computing group extensions

A × G with this operation is a group with identity element (−f(1, 1), 1) and the

inverse of (a, g) ∈ A×G given by

(a, g)−1 = (−g−1a− f(g−1, g)− f(1, 1), g−1). (3.2.29)

We now construct the rest of the extension. Let A∗ be defined by

A∗ := {(a− f(1, 1), 1) : a ∈ A}. (3.2.30)

A∗ is a normal subgroup of G̃ with the inverses given by

(a− f(1, 1), 1)−1 = (−a− f(1, 1), 1) (3.2.31)

The isomorphism ι : A→ A∗ is defined by

a 7→ (a− f(1, 1), 1). (3.2.32)

Define π : G̃→ G by the projection (a, g) 7→ g. Now A∗, the image of ι, is contained

in ker π since the second coordinate is 1 ∈ G for every element of A∗. Thus (3.2.27)

is an extension of A by G. Lastly, let s : G → G̃ be a section of π and let fs be

the factor set of the extension in (3.2.27). One can show that fs and f are equal in

H2(G,A).

For more of the details of this proof see page 827 of [18] and page 92 of [11].

Remark 3.2.33. The construction in Lemma 3.2.26 generalizes the semidirect product

construction in Example 3.2.9.

26

3.2 Computing group extensions

Theorem 3.2.34. There is a bijection between equivalence classes of extensions of

A by G as in (3.2.2) and elements of H2(G,A).

Proof. The least technical proof is by reducing to the normalized setting and is de-

scribed in detail on page 826 and page 827 in [18]. Below we give a summary of the

proof.

Every 2-cocycle f has a normalized 2-cocycle in its cohomology class, so without

loss of generality we can assume f is normalized. One then shows that extension

constructed from f using Lemma 3.2.26 has normalized factor set equal to f . The

last step is showing that this procedure does not depend on the choice of normal-

ized 2-cocycle by showing that as long as the normalized 2-cocycles are in the same

cohomology class then the corresponding extensions will be equivalent.

Having established Theorem 3.2.34, we are interested in computing representa-

tives of H2(G,A). To do this we use the implementation in Magma described in [9,

Cohomology and group extensions]. Describing this implementation in detail is be-

yond the scope of this work. Instead, we provide Example 3.2.37 at the end of this

section detailing how we use these implementations in practice. In our computation

of permutation triples corresponding to 2-group Belyi maps in the next section, we

will first be concerned with computing extensions of A by G where G is a finite 2-

group and A ' Z/2Z. The first consideration in producing these extensions is the

possible G-module structures on A. Fortunately, the only G-module structure on A

is the trivial action corresponding to the only homomorphism

G→ Aut(Z/2Z). (3.2.35)

27

3.2 Computing group extensions

According to Theorem 3.2.34, the equivalent extensions of A by G correspond to

elements of H2(G,A) which can be computed efficiently in Magma and explicitly

converted to group extensions as in Example 3.2.37.

Remark 3.2.36. Modifications are required to compute extensions when A is cyclic

of prime order p. All possible homomorphisms G→ Aut(Z/pZ) ∼= (Z/pZ)× must be

computed, and for each G-module A, the corresponding group H2(G,A) must also be

computed. When A has more than one cyclic factor, the situation becomes more com-

plicated. For example, the possible G-module structures on A ∼= Z/pZ× · · · × Z/pZ︸ ︷︷ ︸
d times

correspond to irreducible Fp[G]-modules of dimension d. Although Magma is capa-

ble of computing these modules, we do not require this level of generality for the

computations in the next section.

We conclude this section with an example of how we compute group extensions

in Magma.

Example 3.2.37. A file with the source code for this example can be found in the

repository [32] and can be run from a shell in the repository as follows.

Shell

magma thesis_examples/group_extensions.m

Let σ be the permutation triple representing the size 1 passport (41, G, (16, 2, 8))

where G is the permutation group generated by σ of order 256 and small group

database label (256, 100). Suppressing the permutations in σ, the source code is as

follows.

Magma

...

G := sub<Sym(256)|sigma>;

28

3.2 Computing group extensions

assert IsTransitive(G);

assert #G eq 256;

A := TrivialModule(G, GF(2));

CM := CohomologyModule(G, A);

H2 := CohomologyGroup(CM, 2);

extensions := [* *];

for h in H2 do

E_fp, pi_fp, iota_fp := Extension(CM, h);

iso, E, K := CosetAction(E_fp, sub<E_fp|Id(E_fp)>);

iotaE := iota_fp*iso;

piE := (iso^-1)*pi_fp;

assert Image(iotaE) eq Kernel(piE);

assert Image(iotaE).1 in Center(E);

Append(~extensions, [* E, iotaE, piE , h *]);

end for;

We first construct A as a G-module and construct H2(G,A) using the Cohomology

module functionality in Magma. In this example #H2(G,A) = 32. For each coho-

mology class, we compute the corresponding extension (as a finitely presented group)

along with mappings defining the extension. Lastly, we act on the identity coset to

obtain the extension as a permutation group along with the appropriate mappings.

29

3.3 An iterative algorithm to produce generating triples

Section 3.3

An iterative algorithm to produce generating

triples

The aim of this section is to use the group cohomology algorithms, discussed in Section

3.2, to iteratively compute p-group permutation triples which we define below.

Definition 3.3.1. Let p be prime. Let d ∈ Z≥1. A p-group permutation triple of

degree d is a triple of permutations σ := (σ0, σ1, σ∞) ∈ S3
d satisfying

• σ∞σ1σ0 = 1;

• G := 〈σ〉 is a transitive subgroup of Sd; and

• G is a p-group of order d embedded in Sd via its left regular representation.

The group G is called the monodromy group of σ. We say that two p-group permuta-

tion triples σ, σ′ are simultaneously conjugate if there exists τ ∈ Sd such that

στ := (τ−1σ0τ, τ
−1σ1τ, τ

−1σ∞τ) = (σ′0, σ
′
1, σ

′
∞) = σ′. (3.3.2)

Remark 3.3.3. In the process of computing extensions of monodromy groups of p-

group Belyi maps we must pass back and forth between permutation groups and

abstract groups given by a presentation. Insisting that G embeds into Sd via its

regular representation eliminates the ambiguity in embedding a finitely presented

group into Sd. This explains the last property in Definition 3.3.1.

Example 3.3.4. When d = 1 we define the triple (id, id, id) ∈ S3
1 to be a p-group

permutation triple for every p. This is the unique p-group permutation triple of

30

3.3 An iterative algorithm to produce generating triples

degree 1.

Example 3.3.5. Let d = p and let σs be any p-cycle in Sp. Then we can write 3 distinct

p-group permutation triples of degree p:

(
σs, σ

−1
s , id

)
,
(
σs, id, σ

−1
s

)
,
(

id, σs, σ
−1
s

)
. (3.3.6)

These are the only p-group permutation triples of degree p up to simultaneous con-

jugation.

We will describe the algorithms in this section in this slightly more general setting

even though the p = 2 case is our primary concern.

Notation 3.3.7. Let σ be a p-group permutation triple with monodromy group G

and let A ∼= Z/pZ cyclic of prime order. Let G̃ be an extension of A by G sitting in

the exact sequence

1 A G̃ G 1.ι π (3.3.8)

By Corollary 3.1.5 the image of ι is a central subgroup of G̃. The algorithm discussed

in this section is iterative, and the base case for this iteration is described in Example

3.3.4.

Definition 3.3.9. Let σ be a p-group permutation triple of degree d with monodromy

group G. We say that another p-group permutation triple σ̃ is a p-lift (or simply a

lift) of σ if σ̃ is a p-group permutation triple of degree pd with monodromy group G̃

sitting in the exact sequence in (3.3.8) with A ∼= Z/pZ.

31

3.3 An iterative algorithm to produce generating triples

Notation 3.3.10. In Algorithm 3.3.11, the objective will be to lift a p-group per-

mutation triple σ of degree d to p-group permutation triples σ̃ of degree pd. We will

denote the set of lifts of σ by Lifts(σ) and write Lifts(σ)/∼ to denote the equivalence

classes of lifts up to simultaneous conjugation in Spd.

Once we can compute Lifts(σ), the next objective is to enumerate all p-group

permutation triples up to a given degree along with the bipartite graph structure

determined by lifting triples. More precisely, let Gpi denote the bipartite graph with

the following node sets.

• G above
pi : the set of isomorphism classes of p-group permutation triples of degree

pi indexed by permutation triples σ̃ up to simultaneous conjugation in Spi

• G below
pi : the set of isomorphism classes of p-group permutation triples of degree

pi−1 indexed by permutation triples σ up to simultaneous conjugation in Spi−1

The edge set of Gpi is defined as follows. For every pair of nodes (σ̃, σ) ∈ G above
pi ×G below

pi

there is an edge between σ̃ and σ if and only if σ̃ is simultaneously conjugate to a lift

of σ.

Now that we have set up some notation and definitions, we now describe the

algorithms.

Algorithm 3.3.11. Let p be prime and let d ∈ Z≥1.

Input:

• σ = (σ0, σ1, σ∞) ∈ S3
d a p-group permutation triple with monodromy group G

• A a G-module

32

3.3 An iterative algorithm to produce generating triples

Output:

All degree p lifts σ̃ of σ up to simultaneous conjugation in Spd where the induced G-

module structure on A from the extension in (3.3.8) matches the G-module structure

of A given as input.

1. Let G = 〈σ〉 and compute representatives of H2(G,A).

2. For each f ∈ H2(G,A) compute the corresponding extension

1 A G̃f G 1
ιf πf

(3.3.12)

3. For each extension G̃f in (3.3.12) compute the set

Lifts(σ, f) :=
{
σ̃ : σ̃s ∈ π−1f (σs) for s ∈ {0, 1,∞}, σ̃∞σ̃1σ̃0 = 1, 〈σ̃〉 = G̃f

}
(3.3.13)

4. Let

Lifts(σ) :=
⋃

f∈H2(G,A)

Lifts(σ, f) (3.3.14)

5. Quotient Lifts(σ) by the equivalence relation ∼ identifying triples in Lifts(σ)

that are simultaneously conjugate, as in (3.3.2), to obtain representatives of

Lifts(σ)/∼.

Proof of correctness. The computation of H2(G,A) is described in [9] and imple-

mented in [10]. Theorem 3.2.34 in Section 3.2 implies the following.

• The elements of H2(G,A) are in bijection with extensions G̃f as in (3.3.12).

• Any lift of σ inducing the G-module structure of A on Z/pZ must have mon-

odromy group sitting in an exact sequence obtained in Step 2.

33

3.3 An iterative algorithm to produce generating triples

In Step 3 all possible lifts of σ for a single extension G̃f are computed. This is done

by computing all (#A)3 triples mapping to σ under πf and checking which satisfy

the conditions to be a lift of σ. After collecting all the lifts together in Step 4 it is

possible there are simultaneously conjugate p-group permutation triples in Lifts(σ).

In Step 5 we quotient by simultaneous conjugation to obtain the desired set of lifts

as output.

Algorithm 3.3.11 reduces the problem of finding all lifts of a given p-group permu-

tation triple σ to determining all possible 〈σ〉-module structures on Z/pZ. Although

computations of this sort are implemented in [10], it is especially easy to do when

p = 2.

Lemma 3.3.15. Let G be a finite group. The only G-module structure on Z/2Z is

trivial.

Proof. A G-module structure on Z/2Z is a homomorphism from G to Aut(Z/2Z).

But Aut(Z/2Z) ∼= (Z/2Z)× which is the trivial group, so there is only one such

homomorphism.

For the rest of this section we suppose that p = 2. In this special case, Algorithm

3.3.11 does not require a G-module as input since (by Lemma 3.3.15) the trivial

G-module structure on Z/2Z can be assumed.

Remark 3.3.16. Suppose p = 2 using Notation 3.3.7. Then ι(A) is an order 2 normal

subgroup of G̃. Let α denote the generator of ι(A). From the perspective of branched

covers, α is identifying 2d sheets in a degree 2d cover down to d sheets in a degree

d cover. To relate the degree 2d cover corresponding to G̃ with the degree d cover

corresponding to G it is convenient to choose α to be the following product of d

34

3.3 An iterative algorithm to produce generating triples

transpositions.

α := (1 d+ 1)(2 d+ 2) . . . (d− 1 2d− 1)(d 2d) (3.3.17)

The benefit of following this convention can be seen in Example 3.3.18 where we

illustrate Algorithm 3.3.11.

Example 3.3.18. In this example we carry out Algorithm 3.3.11 for the degree 2

permutation triple σ = ((1 2), id, (1 2)). Here G = 〈σ〉 ∼= Z/2Z. In Algorithm 3.3.11

Step 2, we obtain two group extensions G̃1
∼= Z/2Z × Z/2Z and G̃2

∼= Z/4Z sitting

in the following exact sequences.

1 Z/2Z G̃1 G 1
ι1 π1

1 Z/2Z G̃2 G 1
ι2 π2

(3.3.19)

We will consider the two extensions separately.

• For G̃1, we can look at preimages of σs under the map π1 to obtain 4 triples

that multiply to the identity:

{
((1 2)(3 4), id, (1 2)(3 4)), ((1 2)(3 4), (1 3)(2 4), (1 4)(2 3)),

((1 4)(2 3), id, (1 4)(2 3)), ((1 4)(2 3), (1 3)(2 4), (1 2)(3 4))
} (3.3.20)

Before we continue with the algorithm, let us take a moment to analyze these

triples more closely. The generator α of ι(Z/2Z) in G̃1 is (1 3)(2 4). Each triple

in (3.3.20) must act on the blocks
{

1 3 , 2 4
}

so that the induced permutations

of these blocks is the same as the corresponding permutation in σ. For

(σ̃0, σ̃1, σ̃∞) = ((1 2)(3 4), (1 3)(2 4), (1 4)(2 4)) (3.3.21)

35

3.3 An iterative algorithm to produce generating triples

we have σ̃0

(
1 3
)

= 2 4 and σ̃0

(
2 4
)

= 1 3 so that the induced permutation

of blocks is (
1 3 , 2 4

)
(3.3.22)

which is the same as the permutation σ0 = (1 2) (as long as we identity 1 3

with 1 and 2 4 with 2). Insisting α has the form in Remark 3.3.16 allows us

to label blocks by reducing modulo d as in (3.3.22). The last requirement for

a triple σ̃ in Equation 3.3.20 to be in Lifts(σ, G̃1) is that σ̃ generates G̃1. We

obtain Lifts(σ, G̃1) to be

{
((1 2)(3 4), (1 3)(2 4), (1 4)(2 3)), ((1 4)(2 3), (1 3)(2 4), (1 2)(3 4))

}
(3.3.23)

• For G̃2, we obtain Lifts(σ, G̃2) to be

{
((1 4 3 2), id, (1 2 3 4)), ((1 2 3 4), (1 3)(2 4), (1 2 3 4)),

((1 2 3 4), id, (1 4 3 2)), ((1 4 3 2), (1 3)(2 4), (1 4 3 2))
} (3.3.24)

At the end of Step 4 we have that Lifts(σ) contains the 2 triples in (3.3.23) and the

4 triples in (3.3.24). Lastly, in Step 5 we quotient by simultaneous conjugation to

obtain the 3 triples

Lifts(σ)/∼ =
{

((1 2)(3 4), (1 3)(2 4), (1 4)(2 3)),

((1 4 3 2), id, (1 2 3 4)),

((1 2 3 4), (1 3)(2 4), (1 2 3 4))
} (3.3.25)

as output.

36

3.3 An iterative algorithm to produce generating triples

Now that we have an algorithm to find all lifts of a single permutation triple, we

now describe how to use this to compute all isomorpism classes of 2-group permutation

triples up to a given degree. In the algorithms to follow, we are concerned with

constructing the bipartite graphs G2i defined in Notation 3.3.10.

Algorithm 3.3.26. Let p = 2 and the notation be as in 3.3.7 and 3.3.10. Then we

can construct G2 as follows.

• The set of nodes G below
2 consists of a single triple (id, id, id) ∈ S3

1

• The set of nodes G above
2 consists of 3 triples described in Example 3.3.5.

• The edge set of G2 consists of 3 edges (i.e. it is the complete bipartite graph for

the sets G below
2 and G above

2)

Proof of correctness. By definition, the 3 degree 2 permutation triples from Example

3.3.5 are the only 2-group permutation triples of degree 2. These are all lifts of the

unique 2-group permutation triple (in Example 3.3.4) via the extension

1 Z/2Z Z/2Z {id} 1id π (3.3.27)

Having constructed G2, we now describe the iterative process to compute G2i from

G2i−1 .

Algorithm 3.3.28. Let p = 2 and the notation be as in 3.3.7 and 3.3.10. This

algorithm describes the process of computing G2i given G2i−1 .

Input: The bipartite graph G2i−1

Output: The bipartite graph G2i

37

3.3 An iterative algorithm to produce generating triples

1. For every σ ∈ G above
2i−1 apply Algorithm 3.3.11 to obtain the set Lifts(σ)/∼ for

each σ. Combine these lifts into a single set

Lifts(G2i−1) :=
⋃

σ∈G above
2i−1

Lifts(σ) (3.3.29)

2. Compute Lifts(G2i−1)/∼ which we define to be the equivalence classes of Lifts(G2i−1)

where two triples σ̃ and σ̃′ in Lifts(G2i−1) are equivalent if and only if they are

simultaneously conjugate in S2i . Denote the equivalence class of σ̃ ∈ Lifts(G2i−1)

by [σ̃] ∈ Lifts(G2i−1)/∼.

3. Define G below
2i

:= G above
2i−1 . Define G above

2i by choosing a single representative for

each equivalence class of Lifts(G2i−1)/∼. This defines the nodes of G2i .

4. For every pair (σ̃, σ) ∈ G above
2i × G below

2i place an edge between σ̃ and σ if and

only if there is a triple in the equivalence class [σ̃] ∈ Lifts(G2i−1)/∼ that is a lift

of σ.

5. Return G2i as output.

Proof of correctness. Since 2-groups are nilpotent, every 2-group permutation triple

of degree 2i is the lift of at least one 2-group permutation triple of degree 2i−1. Let σ̃ ∈

G above
2i be an arbitrary representative of an isomorphism class of 2-group permutation

triples of degree 2i contained in Lifts(σ) for some degree 2i−1 triple σ. Let σ′ denote

the representative in G above
2i−1 that is simultaneously conjugate to σ. Algorithm 3.3.11

ensures that there is a 2-group permutation triple σ̃′ of degree 2i in Lifts(σ′) that is

simultaneously conjugate to σ̃. Thus, Lifts(G2i−1) computed in Step 1 contains at least

one triple for every isomorphism class of 2-group permutation triples of degree 2i. It is,

38

3.4 Results of computations

however, possible for Lifts(G2i−1) to contain simultaneously conjugate triples arising

as lifts of different triples in G above
2i−1 . Step 2 quotients Lifts(G2i−1) by simultaneous

conjugation and Steps 3 and 4 define the desired graph G2i in such a way that the

edge structure of the lifts is preserved.

Algorithm 3.3.26 combined with Algorithm 3.3.28 allows us to compute

G2,G4, . . . ,G2i , . . . ,G2m (3.3.30)

up to any degree d = 2m. A Magma implementation of Algorithms 3.3.11, 3.3.26,

and 3.3.28 can be found at [32]. In the next section we discuss the results of these

computations.

Section 3.4

Results of computations

In this section we discuss the Magma implementation of Algorithms 3.3.11, 3.3.26,

and 3.3.28 available at [32] where the techniques of this chapter are used to tabu-

late a database of 2-group permutation triples up to degree 256. This computation

took roughly 50 CPU hours on a standard desktop. The majority of this time is

spent checking conjugacy of degree 256 permutation triples. This database consists

of roughly 340MB worth of text files. We devote the rest of this section to summa-

rizing the results of these computations.

Theorem 3.4.1. The following table lists the number of isomorphism classes of 2-

39

3.4 Results of computations

group permutation triples of degree d up to 256.

d 1 2 4 8 16 32 64 128 256

permutation triples 1 3 7 19 55 151 503 1799 7175
(3.4.2)

Theorem 3.4.3. The following table lists the number of passports of 2-group permu-

tation triples of degree d up to 256.

d 1 2 4 8 16 32 64 128 256

passports 1 3 7 16 41 96 267 834 2893
(3.4.4)

Theorem 3.4.5. The following table lists the number of lax passports of 2-group

permutation triples of degree d up to 256.

d 1 2 4 8 16 32 64 128 256

lax passports 1 1 3 6 14 31 85 257 882
(3.4.6)

Theorem 3.4.7. The following table lists the number of 2-group permutation triples

up to degree 256 with {order(σs) : s ∈ {0, 1,∞}} equal to {a, b, c} as sets.

(a, b, c) # permutation triples

(1, 1, 1) 1

(1, 2, 2) 3

(1, 4, 4) 3

(1, 8, 8) 3

(1, 16, 16) 3

(1, 32, 32) 3

40

3.4 Results of computations

(1, 64, 64) 3

(1, 128, 128) 3

(1, 256, 256) 3

(2, 2, 2) 1

(2, 2, 4) 24

(2, 2, 8) 132

(2, 2, 16) 144

(2, 2, 32) 60

(2, 2, 64) 24

(2, 2, 128) 12

(2, 4, 4) 24

(2, 4, 8) 78

(2, 4, 16) 78

(2, 4, 32) 30

(2, 4, 64) 18

(2, 4, 128) 6

(2, 8, 8) 132

(2, 8, 16) 156

(2, 8, 32) 60

(2, 8, 64) 12

(2, 16, 16) 144

(2, 16, 32) 36

(2, 32, 32) 60

41

3.4 Results of computations

(2, 64, 64) 24

(2, 128, 128) 12

(2, 256, 256) 3

(4, 4, 4) 65

(4, 4, 8) 1581

(4, 4, 16) 969

(4, 4, 32) 225

(4, 4, 64) 69

(4, 4, 128) 15

(4, 8, 8) 1581

(4, 8, 16) 960

(4, 8, 32) 168

(4, 8, 64) 24

(4, 16, 16) 969

(4, 16, 32) 84

(4, 32, 32) 225

(4, 64, 64) 69

(4, 128, 128) 15

(4, 256, 256) 6

(8, 8, 8) 726

(8, 8, 16) 1542

(8, 8, 32) 378

(8, 8, 64) 78

42

3.4 Results of computations

(8, 16, 16) 1542

(8, 16, 32) 72

(8, 32, 32) 378

(8, 64, 64) 78

(8, 128, 128) 24

(8, 256, 256) 12

(16, 16, 16) 136

(16, 16, 32) 552

(16, 32, 32) 552

(16, 64, 64) 144

(16, 128, 128) 48

(16, 256, 256) 24

(32, 64, 64) 288

(32, 128, 128) 96

(32, 256, 256) 48

(64, 128, 128) 192

(64, 256, 256) 96

(128, 256, 256) 192

Remark 3.4.8. The above table in Theorem 3.4.7 has a pattern. The table entries

corresponding to (8, 8, 16) and (8, 16, 16) are equal and the table entries correspond-

ing to (16, 16, 32) and (16, 32, 32) are equal. This appears to be more than just a

coincidence, but at this point we do not have an explanation of this phenomenon.

43

3.4 Results of computations

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

g

#
tr

ip
le

s

Figure 3.4.9: Distribution of genera up to degree 256.

44

3.4 Results of computations

1 2 4 8 16 32 64 12
8

25
6

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

degree

#
p
as

sp
or

ts
nonhyperbolic

hyperbolic

1 2 4 8 16 32 64 12
8

25
6

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

degree

#
la

x
p
as

sp
or

ts

nonhyperbolic
hyperbolic

Figure 3.4.10: # nonhyperbolic and hyperbolic passports by degree (left), and #
nonhyperbolic and hyperbolic lax passports by degree (right).

45

3.4 Results of computations

1 2 4 8 16 32 64 12
8

25
6

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500

7,000

7,500

degree

#
tr

ip
le

s
abelian

non-abelian

1 2 4 8 16 32 64 12
8

25
6

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500

7,000

7,500

degree

class 1
class 2
class 3
class 4
class 5
class 6
class 7

Figure 3.4.11: # permutation triples by degree with abelian and non-abelian mon-
odromy groups (left) and # permutation triples by degree with monodromy groups
of various nilpotency classes (right).

46

3.4 Results of computations

1 2 4 8 16 32 64 12
8

25
6

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

degree

#
p
as

sp
or

ts
size 1
size 2
size 3
size 4
size 6
size 8
size 12
size 16
size 24
size 32
size 64

Figure 3.4.12: # passports of various sizes by degree.

47

Chapter 4

Fields of definition of 2-group Belyi

maps

Recall from Definition 2.1.8, that a field of definition of a Belyi map φ : X → P1

is a number field K ⊆ C such that X and φ are defined using algebraic equations

having coefficients in K. Theorem 2.4.6 proves that the moduli field of a Belyi map

has degree bounded by the size of its passport. This is obtained from the action of

Gal(Qal |Q) on the Belyi maps with a given passport. There is an analogous action

of Gal(Qal |Qab) on refined passports which we define and compute in this chapter.

Section 4.1

Refined passports

Let σ be a 2-group permutation triple. Recall, from Definition 2.2.4, that the passport

of σ consists of the data (g(σ), 〈σ〉, λ(σ)) where g(σ) is the genus, 〈σ〉 is the mon-

odromy group (2-group in its regular representation) as a subgroup of Sd, and λ(σ) is

48

4.1 Refined passports

the triple of partitions specifying the three ordered Sd conjugacy classes C0, C1, C∞

of σ0, σ1, σ∞ respectively. Let P be the passport of σ. The size of P is the cardinality

of the set

ΣP = {(σ0, σ1, σ∞) ∈ C0 × C1 × C∞ : σ∞σ1σ0 = 1 and 〈σ0, σ1, σ∞〉 = G}/ ∼ (4.1.1)

where (σ0, σ1, σ∞) ∼ (σ′0, σ
′
1, σ

′
∞) if the triples are simultaneously conjugate by an

element of Sd. By Theorem 2.4.6, the cardinality of ΣP bounds the field of moduli of

the Belyi map corresponding to σ.

Let G be a transitive subgroup of Sd and let C be a conjugacy class of Sd. Then C

can be partitioned into conjugacy classes of G. To analyze conjugacy in G we make

the following definition.

Definition 4.1.2. A refined passport P consists of the data (g,G, c) where g ≥ 0 is

an integer, G ≤ Sd is a transitive subgroup, and c = (c0, c1, c∞) is a triple of conjugacy

classes of G. For a refined passport P consider the set

ΣP = {(σ0, σ1, σ∞) ∈ c0 × c1 × c∞ : σ∞σ1σ0 = 1 and 〈σ0, σ1, σ∞〉 = G}/ ∼ (4.1.3)

where (σ0, σ1, σ∞) ∼ (σ′0, σ
′
1, σ

′
∞) if and only if there exists α ∈ Aut(G) with α(σs) =

σ′s for s ∈ {0, 1,∞}.

Let σ be a permutation triple and let cs denote the conjugacy class of 〈σ〉 con-

taining σs for s ∈ {0, 1,∞}. We define the refined passport of σ to be

P(σ) = (g(σ), 〈σ〉, (c0, c1, c∞)). (4.1.4)

49

4.2 Computing refined passports

Section 4.2

Computing refined passports

Let σ be a 2-group permutation triple. Let P and P denote the passport and refined

passport of σ respectively. Let ΣP and ΣP denote the sets in (4.1.1) and (4.1.3)

respectively.

Chapter 3 provides us with an explicit list of all 2-group permutation triples (up

to simultaneous conjugation in Sd) for fixed degree. Using techniques from Musty,

Schiavone, Sijsling, and Voight in [33], we now describe the computation of ΣP(σ) for

every 2-group permutation triple σ of degree d for d ≤ 256.

The main tool for efficiently computing refined passports comes from the passport

lemma, [33, Lemma 2.2.1], which we now state.

Lemma 4.2.1 (Passport lemma). Let S be a group, let G ≤ S be a subgroup, let

N := NS(G) be the normalizer of G in S, and let C0, C1 be conjugacy classes in N

represented by τ0, τ1 ∈ G. Let CN(g) denote the centralizer of g in N . Let

U := {(σ0, σ1) ∈ C0 × C1 : 〈σ0, σ1〉 ⊆ G}/∼ (4.2.2)

where ∼ indicates simultaneous conjugation by elements in S. Then the map

u : CN(τ0)\N/CN(τ1)→ U

CN(τ0)νCN(τ1) 7→ [(τ0, ντ1ν
−1)]

(4.2.3)

is surjective, and for all [(σ0, σ1)] ∈ U such that 〈σ0, σ1〉 = G, there is a unique

preimage under u.

50

4.2 Computing refined passports

With the passport lemma in hand, we can now describe an efficient algorithm to

compute refined passports.

Algorithm 4.2.4.

Input: σ a 2-group permutation triple

Output: Refined passport representatives for P(σ)

1. Compute the set U from the passport lemma with τ0 = σ0, τ1 = σ1, and S = G.

2. Let U ′ := {(g0, g1) ∈ U : 〈g0, g1〉 = G}.

3. Extend all pairs (g0, g1) in U ′ from Step 2 to triples (g0, g1, g∞) satisfying

g∞g1g0 = 1. Let T denote the set of triples obtained in this way from the

pairs of U ′.

4. Let C0, C1, C∞ denote the conjugacy classes of σ0, σ1, σ∞ respectively and let

T ′ := {(g0, g1, g∞) ∈ T : g∞ ∈ C∞}.

5. Quotient T ′ by outer automorphisms of G. That is, for every pair of triples

(g0, g1, g∞) and (g′0, g
′
1, g
′
∞) in T with (g′0, g

′
1, g
′
∞) = (α(g0), α(g1), α(g∞)) for

some α ∈ Out(G) only keep one such triple in T . Return this quotient of T ′ as

output.

Proof of correctness. By the passport lemma, we have that T ′ is equal to the set

{(g0, g1, g∞) ∈ C0 × C1 × C∞ : g∞g1g0 = 1, and 〈g0, g1, g∞〉 = G}/∼ (4.2.5)

where ∼ denotes simultaneous conjugation in NG(G) = G. The refined passport of σ

can now be obtained from T ′ by eliminating redundant triples that can be identified

51

4.2 Computing refined passports

by an outer automorphism of G. This is done in the last step of the algorithm and

completes the proof.

Applying Algorithm 4.2.4 to the 2-group permutation triples computed from Sec-

tion 3.3 yields the following result about the sizes of refined passports.

Theorem 4.2.6. Every 2-group permutation triple of degree d with d ≤ 64 has refined

passport size 1. There are 48 2-group permutation triples (up to simultaneous conju-

gation) of degree 128 with refined passport size 2 and the rest have refined passport

size 1. There are 288 2-group permutation triples (up to simultaneous conjugation)

of degree 256 with refined passport size 2 and the rest have refined passport size 1.

Theorem 4.2.6 can now be used to prove the following theorem.

Theorem 4.2.7. Every 2-group Belyi map of degree d with d ≤ 256 is defined over

a quadratic extension of an abelian extension of Q ramified only at 2.

Proof. Let φ : X → P1 be a 2-group Belyi map of degree d ≤ 256. Let M denote

the field of moduli of φ. Theorem 1.1.2 (Beckmann’s theorem) implies that for every

odd prime p there exists a number field Mp that is a field of definition for φ that is

unramified at p. Since M ⊆Mp for all p we have that M is unramified away from 2.

Moreover, by Theorem 2.4.7, φ is defined over M . So φ is defined over M which is

unramified away from 2.

Let P denote the refined passport of φ. Since Gal(Qal |Qab) acts on P, see [41,

Proposition 7.6], the size of P bounds the degree of M over Qab. The calculation in

Theorem 4.2.6 shows that the size of P is at most 2 and completes the proof.

For a visual representation of Theorem 4.2.6 see the figure below. Note how small

the refined passport sizes are in comparison to the passport sizes from Section 3.4.

52

4.2 Computing refined passports

1 2 4 8 16 32 64 12
8

25
6

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500

7,000

7,500

degree

#
tr

ip
le

s
size 1
size 2

Figure 4.2.8: # permutation triples with refined passports of various sizes by degree.

53

Chapter 5

Computing equations

In this chapter we discuss how to compute equations for 2-group Belyi maps corre-

sponding to the 2-group permutation triples computed in Chapter 3. As was the case

for computing the permutation triples, the algorithm to compute equations follows

an iterative approach. In this chapter we construct the 2-group Belyi maps as towers

of quadratic extensions of function fields. We begin in Section 5.1 by discussing the

analogous situation over number fields. In Section 5.2 and Section 5.3 we discuss

the relevant background about algebraic function fields. The algorithms to compute

equations for 2-group Belyi maps (over Fq) are described in Section 5.4, the imple-

mentation in characteristic zero is detailed in Section 5.5, and the results of these

computations can be found in Section 5.6.

Section 5.1

Quadratic extensions of number fields

By way of motivation, let F be a number field and let ZF denote the ring of integers

of F . Kummer theory tells us that quadratic extensions of F are in bijection with

54

5.1 Quadratic extensions of number fields

nontrivial cosets dF×2 in the quotient F×/F×2; such a coset defines a quadratic ex-

tension F (
√
d). Conversely, let F (α) be a quadratic extension of F . The discriminant

of the minimal polynomial of α defines the bijection in the other direction.

Let Pl(F) denote the set of places of F and let S∞ denote the Archimedean

places. For v ∈ Pl(F) \ S∞ let pv be the prime ideal of ZF corresponding to v. Let

S ⊂ Pl(F) \ S∞ be a finite set of nonarchimedean places, and further suppose that

each place of S has odd order residue field. We aim to answer the following question.

Question 5.1.1. How do we construct a quadratic extension of F ramified at pv for

all v ∈ S and unramified at all nonarchimedean places outside of S? If so, then how

unique is the construction?

To formulate this question more clearly, let a :=
∏

v∈S pv encode the primes we

want to ramify in this quadratic extension. There are three possibilities.

• It is possible that no such extension exists.

• a = (d) is principal and the extension F (
√
d) is a quadratic extension ramified

exactly at each pv, and the generator d is unique up to multiplication by a unit

in Z×2F .

• If a is not principal, it is possible there exists a fractional ideal b such that

ab2 = (d). In this case, we can again construct the extension F (
√
d) with the

prescribed ramification, but d is only unique up to the ideal b used to construct

it.

Let us consider the last case more closely. Let ClF denote the class group of F and

for a fractional ideal c let [c] denote its ideal class in ClF . The equation ab2 = (d)

55

5.2 Curves and algebraic function fields

means that [a] = [b−2] so that [a] ∈ Cl2F . Moreover, if we take an element [c] of order

2 in ClF , then

[ab2] = [ab2][c2] = [a(bc)2]. (5.1.2)

Thus, in the case where a is not principal, but there exists b with ab2 principal, we

have [a] ∈ Cl2F and [b] is unique up to multiplication by [c] ∈ ClF [2].

We can now formulate our precise goal. Given a (encoding ramification data),

find b2 and d such that ab2 = (d). In the following sections we will rephrase this

problem in the function field setting.

Section 5.2

Curves and algebraic function fields

In this section we summarize the setting in which the algorithms of this chapter are

stated. There are many comprehensive resources on this topic such as [22, I.6], [45],

and [36].

First, let K be a perfect field.

Definition 5.2.1. An algebraic function field in one variable over K is a field extension

F over K of transcendence degree 1. That is, there exists x ∈ F such that x is

transcendental over K and [F : K(x)] is finite.

Definition 5.2.2. We say the K is the constant field of F . The exact constant field

of F is the algebraic closure of K in F .

Remark 5.2.3. In theory we can assume that K is the exact constant field of F , but

in practice for K a number field or Fq we try to work with constant fields that are as

simple as possible.

56

5.2 Curves and algebraic function fields

Example 5.2.4. Let X be an irreducible affine plane curve defined by the defining

equation f(x, y) = 0 with f ∈ K[x, y]. Then the function field of X, denoted by

K(X), is defined to be the field of fractions of the coordinate ring K[x,y]
(f(x,y))

of X.

Definition 5.2.5. A place P of F is the maximal ideal of some discrete valuation

ring OP of F . We denote the valuation on F corresponding to P by ordP . The set of

places of F is denoted Pl(F). The degree of a place P , denoted deg(P), is the index

[OP/P : K] of the residue class field as an extension of K.

Definition 5.2.6. The divisor class group of F , denoted Div(F), is the free abelian

group generated by the places of F . A divisor D ∈ Div(F) is represented by a formal

sum of places D =
∑

P∈Pl(F) aPP with aP ∈ Z for all P and aP = 0 for all but finitely

many P . We define ordP (D) to be the coefficient aP in the representation of D.

Definition 5.2.7. The support of a divisor D =
∑

P∈Pl(F) aPP , denoted supp(D), is

{P ∈ Pl(F) : aP 6= 0}. The degree ofD is defined to be deg(D) :=
∑

P∈Pl(F) aP deg(P).

The subgroup of Div(F) consisting of the set of degree zero divisors of F is denoted

by Div0(F).

Definition 5.2.8. The image of the map div : F× → Div(F) defined by

div(f) =
∑

P∈Pl(F)

ordP (f)P (5.2.9)

is the subgroup of principal divisors of F and denoted Princ(F). Two divisors D1, D2 ∈

Div(F) are linearly equivalent if D1 −D2 ∈ Princ(F).

Definition 5.2.10. The Picard group of F is defined by Pic(F) := Div(F)/Princ(F).

The Jacobian of F is defined by Pic0(F) := Div0(F)/Princ(F).

57

5.2 Curves and algebraic function fields

Definition 5.2.11. There is a partial order on Div(F) defined by D1 ≥ D2 if and

only if ordP (D1) ≥ ordP (D2) for all P ∈ Pl(F). We say that D ∈ Div(F) is effective

if D ≥ 0.

Definition 5.2.12. The Riemann-Roch space of a divisor D ∈ Div(F) is defined by

L (D) := {f ∈ F : div(f) +D ≥ 0} ∪ {0}.

Now that we have some of the basic definitions of algebraic function fields, we

also need to introduce some terminology concerning extensions of algebraic function

fields.

Definition 5.2.13. Let F, F ′ be algebraic function fields over constant fields K,K ′

respectively and suppose that F ⊆ F ′ and K ⊆ K ′. When these conditions are

satisfied we say that F ′ is an algebraic function field extension of F .

Every place P ′ of F ′ lies above a unique place P = F ∩ P ′ of F . Every place P of

F lies below finitely many places P ′ of F ′. We denote a place P ′ above P by P ′|P .

When P ′|P we can view OP ′ as a free OP -module of rank [F ′ : F] and OP = OP ′ ∩F .

We now summarize the fundamental identity from algebraic number theory in the

function field setting. Let F ′ over K ′ be an extension of F over K and let P ′ be a

place of F ′ above P ∈ Pl(F). There is a unique positive integer denoted e(P ′|P) such

that ordP ′(f) = e(P ′|P) ordP (f) for all f ∈ F . The positive integer e(P ′|P) is called

the ramification index of P ′|P . The residue degree, denoted f(P ′|P) is defined to be

the index [OP ′/P ′ : OP/P] which makes sense after embedding OP/P into OP ′/P ′.

The fundamental identity is then given by the equation

[F ′ : F] =
∑
P ′|P

e(P ′|P)f(P ′|P). (5.2.14)

58

5.2 Curves and algebraic function fields

We now summarize some necessary facts about extending the field of constants of

and algebraic function field.

Definition 5.2.15. An extension F ′ (with constants K ′) of F (with constants K) is

a constant field extension if F ′ = FK ′.

Constant field extensions are one way in which the function field setting differs

from the number field setting. When F ′ = FK ′ is a constant field extension of F over

K, there are several observations to make. First, the relative degree over the rational

function field does not change, that is, [F : K(x)] = [F ′ : K ′(x)] for all x ∈ F \K.

Second, no places of F ramify in F ′. Lastly, define the conorm map by

conF ′|F (P) :=
∑
P ′|P

e(P ′|P)P ′ ∈ Div(F ′). (5.2.16)

The conorm map extends to a homomorphism on divisor, principal divisors, and hence

on divisor classes. Since constant field extensions are unramified, the conorm map

induces an injection Pic(F) ↪→ Pic(F ′).

We conclude this section by proving a lemma we will need later in this chapter.

Lemma 5.2.17. Let aF×2 be a nontrivial coset of F×/F×2 and consider the extension

K := F (
√
a). Then a prime P of F is ramified in K if and only if ordP (a) is odd.

Proof. Since a is not a square in F , the extension is quadratic. Suppose ordP (a) is

odd and let p be a place above P in K. Then we have

2 ordp(
√
a) = ordp(a) = e(p/P) ordP (a). (5.2.18)

Since ordP (a) is odd, (5.2.18) implies that 2 divides e(p/P) so that P is ramified in

59

5.3 Quadratic extensions of function fields

K. Moreover, this says that e(p/P) = 2.

For the converse we check ramification locally at the place P . Suppose e :=

ordP (a) is even. Choose a uniformizer t at P and let b = a/t(e/2). Then F (
√
a) =

F (
√
b), and ordP (b) = 0 implies that F (

√
b) = F (

√
a) is unramified at P .

For a more general proof of this in arbitrary Kummer extensions see [36, Propo-

sition 10.3].

Section 5.3

Quadratic extensions of function fields

We now address two tasks concerning quadratic extensions of function fields that we

need for the algorithms in Section 5.4.

The first task is the problem (analogous to the problem in Section 5.1) of finding a

quadratic extension F (
√
f)/F with ramification (in the relative extension) prescribed

by R ∈ Div(F). By Proposition 5.2.17, we can take all nonzero coefficients of R to

have absolute value 1. As was the case for number fields, there are three possibilities.

First, it could be the case that no such extension exists in which case there is

nothing to do. The other easy case occurs when R is a principal divisor so that

R = div(f) for some f ∈ F×. In this case, the extension F (
√
f) has the desired

ramification determined by R.

The last case occurs when R is not principal, but there exists D ∈ Div(F) with

R − 2D = div(f) for some f ∈ F . By Proposition 5.2.17, the extension F (
√
f)/F

will be ramified precisely at the places in the support of R. For D ∈ Div(F), let

[D] denote the class of D in Pic(F). Since [R − 2D] = 0 ∈ Pic0(F), we have that

60

5.4 An algorithm over Fq

R ∈ 2 Pic(F). Moreover, if we let [T] ∈ Pic0(F)[2], then

[R− 2D] = [R− 2D]− [2T] = [R− 2(D + T)]. (5.3.1)

Thus, in the case where R− 2D is principal, we have R ∈ 2 Div(F) and D is unique

up to an order 2 element of Pic(F). The fact that we cannot determine D exactly

requires us to compute Pic(F) to carry out the desired computations. This forces us

to work over Fq where Picard group computations are implemented.

The other task is to determine when the quadratic extension F (
√
f) over F is

Galois (as an absolute extension of Fq(x)) given that F is Galois over Fq(x). Kummer

theory tells us precisely when such an extension is Galois in the following Lemma.

Lemma 5.3.2. Let F be a Galois extension of Fq(x) with Galois group G and let

f ∈ F×/F×2. Then the quadratic extension F (
√
f) is Galois as an absolute extension

of Fq(x) if and only if σ(f)/f is a square in F for every σ ∈ G.

We can now formulate these concepts into an algorithm over Fq.

Section 5.4

An algorithm over Fq

Let F be function field with field of constants Fq with q = pr and p 6= 2. Let Fq(x)

denote the rational function field in the variable x.

Definition 5.4.1. A tame Belyi map over a field K is a branched cover φ : X → P1
K

over K unramified away from {0, 1,∞} such that the characteristic of K does not

divide the degree of φ.

61

5.4 An algorithm over Fq

A tame Belyi map φ : X → P1
K corresponds to an extension of function fields

K(P1) ↪→ K(X), unramified away from {0, 1,∞}, with the characteristic of K not

dividing [K(X) : K(P1)].

Definition 5.4.2. A Galois tame Belyi map is a tame Belyi map φ : X → P1
K that is

also Galois (see Definition 2.1.10).

Definition 5.4.3. A 2-group Belyi map modulo q is a Galois tame Belyi map φ : X →

P1
Fq

with deg(φ) a power of 2.

A 2-group Belyi map modulo q corresponds to a function field extension Fq(x) ↪→

F with [F : Fq(x)] a power of 2 unramified outside of all places above {0, 1,∞}. We

will refer to 2-group Belyi maps modulo q by their corresponding function fields.

Remark 5.4.4. The theory of tame Belyi maps is similar to the theory in characteristic

zero.

We now describe the algorithms to iteratively compute 2-group Belyi maps modulo

q. The basic idea is to compute a tower of quadratic extensions by extracting square

roots to work our way up the tower. Since we are concerned with Galois Belyi maps,

we want to make sure that each intermediate field is Galois as an absolute extension

of Fq(x). To start, we describe the degree 2 Belyi maps.

Lemma 5.4.5. Let K be a field of characteristic not equal to 2. The three degree 2

Belyi maps up to isomorphism are

F(1,2,2) =
K(x)[y]

(y2 + x− 1)
, F(2,1,2) =

K(x)[y]

(y2 − x)
, and F(2,2,1) =

K(x)[y]

(y2 − x2 + x)
. (5.4.6)

In particular, if we replace K with Fq with q odd, then these are the three degree 2

2-group Belyi maps modulo q up to isomorphism.

62

5.4 An algorithm over Fq

Proof. All three degree 2 passports (0,Z/2Z, (1, 2, 2)), (0,Z/2Z, (2, 1, 2)), and

(0,Z/2Z, (2, 2, 1)) have size 1 by Theorem 3.4.1 and Theorem 3.4.3. Since each field is

a 2-group Belyi map with passport specified by its subscript with no two isomorphic,

this is an exhaustive list.

Remark 5.4.7. All three 2-group Belyi maps in Lemma 5.4.5 are lax isomorphic.

Next, we discuss the algorithms to test when a quadratic extension is Galois (over

the rational function field).

Algorithm 5.4.8 (IsGalois).

Input:

• F a Galois extension of Fq(x)

• Gal(F |Fq(x)) explicitly given as automorphisms of F

• f ∈ F

Output: True if the quadratic extension F (
√
f) of F is a Galois extension over Fq(x)

and False otherwise

1. For each generator σ of Gal(F |Fq(x)) test if σ(f)/f is a square in F×.

2. If σ(f)/f ∈ F×2 for all generators σ, then return True otherwise return False.

Proof of correctness. The correctness of this algorithm follows from Kummer theory

as discussed in Lemma 5.3.2. It suffices to test on generators since the property of

being a square is multiplicative.

Algorithm 5.4.9 (IsGaloisOverExtension).

Input:

63

5.4 An algorithm over Fq

• F a Galois extension of Fq(x)

• Gal(F |Fq(x)) explicitly given as automorphisms of F

• f ∈ F

Let F ′ be the function field F with the constant field extended from Fq to Fq2 .

Output: True if the quadratic extension F (
√
f) of F is a Galois extension over

Fqm(x) after extending the field of constants from Fq to Fqm (for some positive integer

m) and False otherwise

1. For each generator σ of Gal(F ′ |Fq2(x)) test if σ(f)/f is a square in F ′.

2. If σ(f)/f is a square in F ′ for all generators σ, then return True otherwise return

False.

Proof of correctness. The proof is similar to the previous algorithm. The proof that

it is sufficient to check if elements are square over Fq2 can be found in [45, Corollary

3.7.4].

The next algorithm details the process of finding the appropriate candidate func-

tion to obtain a quadratic extension by extracting a square root.

Algorithm 5.4.10 (GetCandidateFunctions).

Input:

• F a 2-group Belyi map modulo q of degree d = 2m corresponding to a 2-group

permutation triple σ

• A passport P = (G̃, (a, b, c)) with G̃ a 2-group of order 2d such that there exists

a 2-group permutation triple σ̃ with passport P that is a lift of σ

64

5.4 An algorithm over Fq

• Gal(F |Fq(x)) ∼= 〈σ〉 explicitly given as automorphisms of F

Output: A list of candidate functions {fi} with each fi ∈ F such that F (
√
fi) is a

2-group Belyi map modulo q with passport P .

1. For s ∈ {0, 1,∞} compute

rs :=

0 if order(σs) = order(σ̃s)

1 if order(σs) < order(σ̃s)

(5.4.11)

2. Compute

R :=
∑

s∈{0,1,∞}

rsRs ∈ Div(F) (5.4.12)

where R0, R1, R∞ are defined to be the supports of div(x), div(x − 1), and

div(1/x) respectively.

3. Compute the abelian group Pic(F) = T ⊕ Z (with T a finite abelian group)

along with a map ψ : Div(F)→ Pic(F).

4. Compute [R] := ψ(R).

5. Check that [R] ∈ 2 Pic(F). If not, then return the empty set, otherwise continue.

6. For each a ∈ Pic(F)[2] compute the following:

(a) Let Da := ψ−1(a+ [R]/2) ∈ Div(F).

(b) Compute L (R− 2Da).

(c) If L (R−2Da) has dimension 1, then compute fa ∈ F with div(fa) generat-

ing L (R−2Da) and go to Step 6d. Otherwise go to the next a ∈ Pic(F)[2].

65

5.4 An algorithm over Fq

(d) Apply Algorithm 5.4.8 to F , Gal(F |Fq(x)), and fa from Step 6c to see if

F (
√
fa) generates a Galois extension. If F (

√
fa) is Galois over Fq(x) then

save fa and go to the next a ∈ Pic(F)[2]. If F (
√
fa) is not Galois over

Fq(x), then go to Step 6e.

(e) Let F ′ be the function field F after extending the field of constants Fq to

Fq2 . Apply Algorithm 5.4.9 to F ′, Gal(F ′ |Fq2(x)), and fa (viewed as an

element of F ′) from Step 6c to see if F ′(
√
fa) generates a Galois extension.

If F (
√
fa) is Galois over Fq2(x) then save fa. Go to the next a ∈ Pic(F)[2].

7. Let S be the set of fa saved in Step 6d. Let S ′ be the set of fa saved in Step 6e.

8. • If S is nonempty, then for each fa ∈ S compute F (
√
fa),

Ga
∼= Gal(F (

√
fa) |Fq(x)),

and let S ′′ = {fa ∈ S : Ga
∼= G̃}.

• If S is empty, then for each fa ∈ S ′ compute F ′(
√
fa),

Ga
∼= Gal(F ′(

√
fa) |Fq2(x)),

and let S ′′ = {fa ∈ S ′ : Ga
∼= G̃}.

9. Return the list S ′′ from Step 8.

Proof of correctness. First, note that since we enumerated the isomorphism classes

of 2-group Belyi maps in Chapter 3, we know the size of each passport P as input to

this algorithm. The divisor R computed in Step 2 encodes the ramification required

66

5.4 An algorithm over Fq

to obtain a 2-group Belyi map with ramification matching the passport P . From the

discussion in Section 5.3, R ∈ 2 Div(F), and we can find all solutions to the equation

[R− 2D] = [0] (5.4.13)

in Pic(F). For every element a ∈ Pic(F)[2] we get a solution to (5.4.13). More

precisely, the divisor Da computed in Step 6a satisfies [R−2Da] = [0], and all solutions

to (5.4.13) are of the form Da for some a ∈ Pic(F)[2]. Now, since R−2Da is principal

for each a, we can find a candidate function fa ∈ F with div(fa) = R − 2Da. After

collecting the candidate functions fa, we first use Algorithm 5.4.8 and Algorithm 5.4.9

to eliminate fa that do not generate Galois extensions. Lastly, in Step 8, we only keep

candidate functions fa that generate extensions with Galois group isomorphic to the

group G̃ specified by the passport P . Algorithm 5.4.8 and Algorithm 5.4.9 guarantee

that that no further constant field extension is required.

The next algorithm details the process of extracting a square root of a candidate

function (obtained from the output of Algorithm 5.4.10) and lifting automorphisms.

Algorithm 5.4.14 (LiftBelyiMap).

Input:

• The same input as in Algorithm 5.4.10

• Additionally, a specific fa from the output of Algorithm 5.4.10

Output: A 2-group Belyi map modulo q with passport P and explicit automorphisms

identified with its Galois group G̃

67

5.4 An algorithm over Fq

1. Compute mfa,Fq(x) ∈ Fq(x)[y] the minimal polynomial of fa over Fq(x) and let

α be a root of mfa,Fq(x)(y
2). Let F̃ denote the extension Fq(x)(α).

2. Let mα,Fq(x) be the minimal polynomial of α over Fq(x) and compute the set

R := {r : r is a root of mα,Fq(x) in F̃}. (5.4.15)

3. Return the following:

• The absolute extension F̃ of Fq(x)

• The set of field automorphisms {τr : r ∈ R} where τr : F̃ → F̃ is defined

by α 7→ r.

Proof of correctness. Since fa is obtained from the output of Algorithm 5.4.10, the

extension F̃ is Galois so that mα,Fq(x) has exactly deg(F̃) roots in F̃ . Again by

Algorithm 5.4.10, the extension F̃ defines a 2-group Belyi map modulo q with passport

P . The maps τr : α 7→ r define deg(F̃) automorphisms of F̃ over Fq(x).

With Algorithm 5.4.10 and Algorithm 5.4.14 at our disposal, we can now explain

how to compute all 2-group Belyi maps with a given passport.

Algorithm 5.4.16 (ComputePassport).

Input:

• A passport Pabove = (G̃, (a, b, c))

• A list of passports P1, . . . ,Pk

• For each Pi a list of triples of data (σ1
i , F

1
i , G

1
i), . . . (σ

#Pi

i , F#Pi

i , G#Pi

i) with the

F j
i pairwise non-isomorphic and each (σji , F

j
i , G

j
i) satisfying the following:

68

5.4 An algorithm over Fq

– σji is a 2-group permutation triple with passport Pi

– There exists a 2-group permutation triple σ̃ji with passport Pabove that is

a lift of σji

– F j
i is a 2-group Belyi map modulo q

– Gj
i is the Galois group of F j

i over Fq(x) explicitly given as automorphisms

of F j
i

Output: A list of triples of data (F̃ 1, G̃1), . . . , (F̃#Pabove , G̃#Pabove) with F̃ j a 2-group

Belyi map modulo q′ (with q′ a power of q), G̃j the Galois group of F j
i explicitly given

as automorphisms of F̃ j, and the F̃ j pairwise non-isomorphic.

1. Apply Algorithm 5.4.10 to every triple of data (σji , F
j
i , G

j
i) downstairs (along

with the passport Pabove) to obtain a list of candidate functions CFSq := {f j,ki }

with f j,ki ∈ F
j
i for each k.

2. For each f j,ki ∈ CFSq, apply Algorithm 5.4.14 with input (σji , F
j
i , G

j
i) and f j,ki

to obtain F̃ j,k
i a 2-group Belyi map modulo q with passport P and Galois group

G̃j,k
i . Let BELYIq denote the list of all pairs (F̃ j,k

i , G̃j,k
i) obtained in this step.

3. Test isomorphism of fields F̃ j,k
i and F̃ j,k′

i over Fq(x) for each pair of fields

in BELYIq. Keep exactly one representative of each isomorphism class from

BELYIq and store this data (including the Galois group) in BELYIISOq.

4. If #BELYIISOq = #Pabove then return BELYIISOq. Otherwise, extend the

constant field from Fq to Fq2 and repeat Steps 1, 2, and 3 to obtain lists CFSq2 ,

BELYIq2 , and BELYIISOq2 . Continue this process for q, q2, q3, . . . and return

BELYIISOqm for the first m ∈ {1, 2, . . . } with the same cardinality as Pabove.

69

5.4 An algorithm over Fq

Proof of correctness. This algorithm is largely bookkeeping and applying Algorithm

5.4.10 and Algorithm 5.4.14. The triples of data downstairs enumerate the isomor-

phism classes of 2-group Belyi maps modulo q in all passports that have a represen-

tative with a lift that has passport Pabove.

It is important to note at this point that for every downstairs passport Pi, we need

all #Pi triples of data (σji , F
j
i , G

j
i). This is because Algorithm 5.4.10 only identifies

candidate functions that produce 2-group Belyi maps with the correct passport. It

does not provide a way to identify the precise isomorphism class. That is why, in

this algorithm, we must be content with a list of pairwise non-isomorphic Belyi maps.

By testing isomorphisms we can ensure that we have a representative from every

isomorphism class, but we cannot identify the permutation triple corresponding to a

Belyi map. In this algorithm the permutation triples (obtained from the algorithms

in Section 3.3) are simply a bookkeeping tool.

The one subtle point is explaining how to obtain the q′. After each round of com-

puting the lists CFSqi , BELYIqi , and BELYIISOqi it is possible that we failed to find

all candidate functions over the constant field Fqi . The enumeration of isomorphism

classes in Section 3.3 ensures that this process of extending the constant field will

terminate, but does not provide an a priori bound on the q′ required.

Applying Algorithm 5.4.16 to every degree d passport allows us to enumerate all

2-group Belyi maps modulo q one degree at a time. Section 5.6 details how far we

were able to push these computations in practice using [32].

Remark 5.4.17. The algorithms in this section rely on the Magma implementations

to compute class groups Pic(F) for global function fields, and the implementations

to compute Riemann-Roch spaces L (D).

70

5.4 An algorithm over Fq

We conclude this section with an example of how these algorithms are applied in

a specific example.

Example 5.4.18. In this example we use the algorithms in this section to compute all

three 2-group Belyi maps modulo 3 with passport (3, G, (4, 4, 4)) where G = (Z/4Z) :

(Z/4Z) is the Galois group described at the following link.

http://www.lmfdb.org/GaloisGroup/16T8

The Magma script can be run using the following command from the repository [32].

Shell

magma thesis_examples/compute_passport_16T8_444_g3.m

The source code in this file is as follows.

Magma

load "config.m";

SetVerbose("TwoDBPassport", 3);

SetVerbose("TwoDB", 1);

objs := GetPassportObjects(16);

s := objs[#objs-2];

ComputeBelyiMaps(s : optimized := false);

This example has 7 size 1 passports Pi as in Algorithm 5.4.16. Each isomorphism

class downstairs yields a candidate Belyi map upstairs, and the isomorphism checking

in Algorithm 5.4.16 Step 3 correctly identifies the 3 distinct isomorphism classes out

of 7.

71

http://www.lmfdb.org/GaloisGroup/16T8

5.5 An implementation over Qal

Section 5.5

An implementation over Qal

We now discuss the situation in characteristic zero. The procedure has the same

broad strokes as that in characteristic p 6= 2, but there is a key difference in the

technique to get candidate functions to extract a square root of in Algorithm 5.4.10.

In characteristic zero there is no implementation to compute Pic(F) (for general

F). To show how we can get around this (in some cases), we now rewrite Algorithm

5.4.10 in the characteristic zero setting.

Algorithm 5.5.1.

Input:

• K(x) ↪→ F := K(X) a 2-group Belyi map of degree d = 2m corresponding to a

2-group permutation triple σ

• A passport P = (G̃, (a, b, c)) with G̃ a 2-group of order 2d such that there exists

a 2-group permutation triple σ̃ with passport P that is a lift of σ

• Gal(F |K(x)) ∼= 〈σ〉 explicitly given as automorphisms of F

Output: A list of candidate functions {fi} with each fi ∈ F such that K(x) ↪→

F (
√
fi) is a 2-group Belyi map with passport P .

1. For s ∈ {0, 1,∞} compute

rs :=

0 if order(σs) = order(σ̃s)

1 if order(σs) < order(σ̃s)

(5.5.2)

72

5.5 An implementation over Qal

2. Compute

R :=
∑

s∈{0,1,∞}

rsRs ∈ Div(F) (5.5.3)

where R0, R1, R∞ are defined to be the supports of div(x), div(x − 1), and

div(1/x) respectively.

3. Let M denote the set (R + 2ZR) ∩ Div0(F) and for B ∈ Z≥1 let

MB =
{
R + 2nR : n ∈ {−B,−B + 1, . . . , B − 1, B}

}
∩Div0(F).

4. For each D ∈M compute the following:

(a) Compute L (D).

(b) If L (D) has dimension 1, then compute fD ∈ F with div(fD) generating

L (D) and go to the next step. Otherwise, go to the next D ∈M .

(c) Check to see if F (
√
fD) is Galois. If F (

√
fD) is Galois, then save fD. and

go to the next D ∈M . If F (
√
fD) is not Galois, then go to the next Step.

(d) Let F ′ be the function field F after extending the field of constants to the

compositum of the residue fields of all places in the support of D. Check

to see if F ′(
√
fD) is Galois. If F ′(

√
fD) is Galois, then save fD. Go to the

next D ∈M .

5. Let S be the set of fD saved in Step 4c. Let S ′ be the set of fa saved in Step

4d.

73

5.5 An implementation over Qal

6. • If S is nonempty, then for each fD ∈ S compute F (
√
fD),

GD
∼= Gal(F (

√
fa) |K(x)),

and let S ′′ = {fD ∈ S : GD
∼= G̃}.

• If S is empty, then for each fD ∈ S ′ compute F ′(
√
fD),

GD
∼= Gal(F ′(

√
fD) |K(x)),

and let S ′′ = {fD ∈ S ′ : GD
∼= G̃}.

7. Return the list S ′′ from Step 6.

Although Algorithm 5.5.1 in characteristic zero resembles Algorithm 5.4.10 over

Fq, the characteristic zero algorithm is unfortunately not guaranteed to find any

candidate functions! This is due to the fact that we are not computing representatives

of Pic0(F)[2].

Without enumerating representatives of Pic0(F)[2], the approach in characteristic

zero will always be ad hoc in the sense that in Step 3 we are blindly looking at all

combinations of points that yield the desired ramification. This process is guaranteed

to succeed when F has class number 1, but this condition is not often satisfied (in

fact there are only 8 such non-rational function fields over Fq).

This ad hoc approach does, however, allow us to compute some 2-group Belyi

maps in characteristic zero. We conclude this section by describing the results of

these computations along with those in positive characteristic.

74

5.6 Results of computations

Section 5.6

Results of computations

In this section we summarize the computations carried out in [32] based on the algo-

rithms discussed in Section 5.4 and Section 5.5.

In characteristic 3 we were able to compute all 2-group Belyi maps modulo 3 up

to degree 32. The results of these computations can be accessed in Magma (with

working directory the repository [32]) using the following code.

Magma

load "config.m";

d := 16;

objs := [ReadTwoDBPassport(f) : f in PassportFilenames(d)];

The information for a given passport can be accessed using the following code.

Magma

s := Random(objs);

FunctionFields(s);

BelyiMaps(s);

FunctionFieldAutomorphisms(s);

In addition to the systematic computation of 2-group Belyi maps modulo 3, we

were also able to apply the implementation in Section 5.5 to compute hundreds of

2-group Belyi maps in characteristic zero with degrees up to 256.

We conclude this chapter with interesting examples encountered during these com-

putations. First, in Section 5.7 we set up some notation to help with the description

of these examples.

75

5.7 Naming conventions for database examples

Section 5.7

Naming conventions for database examples

In this section we explain the conventions used for filenames in [32]. This will be

useful for the rest of this chapter when referring to specific examples.

The first point to explain is how we deal with isomorphism classes of 2-group

Belyi maps as opposed to passports. As discussed in Chapter 3, isomorphism classes

of 2-group Belyi maps correspond to 2-group permutation triples each with a unique

filename of the form

DNG-a,b,c-gE-H (5.7.1)

where

D : degree in {2, 4, 8, 16, 32, 64, 128, 256}

N : either T or S identifying group database

G : a positive integer identifying the group

a : ramification index of 0 in {2, 4, 8, 16, 32, 64, 128, 256}

b : ramification index of 1 in {2, 4, 8, 16, 32, 64, 128, 256}

c : ramification index of ∞ in {2, 4, 8, 16, 32, 64, 128, 256}

g : just the letter g

E : the genus in Z≥0

H : the hash of the 2-group permutation triple a positive integer

(5.7.2)

For example, the filename 16T12-4,8,2-g2-1396531181 corresponds to a degree 64

Belyi map with monodromy group identified in the transitive group database (T for

76

5.7 Naming conventions for database examples

transitive)

http://magma.maths.usyd.edu.au/magma/handbook/text/753

by 16T12. The 4,8,2 encodes the ramification above 0, 1,∞ respectively, the g2

indicates that this Belyi map has genus 2, and the 1396531181 is the hash of the

permutation triple corresponding to this Belyi map.

Another example, 64S7-8,8,4-g17-1653847134 corresponds to a degree 16 Belyi

map with monodromy group identified in the small group database (S for small)

http://magma.maths.usyd.edu.au/magma/handbook/text/748

by 64S7. The 8,8,4 encodes the ramification above 0, 1,∞ respectively, the g17

indicates that this Belyi map has genus 17, and the 1653847134 is the hash of the

permutation triple corresponding to this Belyi map. In this example, the hash is

necessary to distinguish this example from

64S7-8,8,4-g17-2483683244,

64S7-8,8,4-g17-623082418,

and 64S7-8,8,4-g17-964508325.

A passport is given a similar filename. The only difference for a passport is that

the hash is no longer required. For example, the Belyi maps with filenames in the

previous paragraph all have the same passport 64S7-8,8,4-g17. The hash is to

distinguish between isomorphism classes within a passport.

The reason for this distinction is that the algorithms for computing equations in

this chapter are designed for passports. Now that we have a concise way of talking

about example, we use this in the rest of the chapter to discuss examples.

77

http://magma.maths.usyd.edu.au/magma/handbook/text/753
http://magma.maths.usyd.edu.au/magma/handbook/text/748

5.8 Degree 2

Section 5.8

Degree 2

In degree 2, there are 3 isomorphism classes of 2-group Belyi maps. In characteristic

zero they are represented by

Q(x)[y]

(y2 + x− 1)
,
Q(x)[y]

(y2 − x)
, and

Q(x)[y]

(y2 − x2 + x)
(5.8.1)

and each is the unique Belyi map with passport 2T1-1,2,2-g0, 2T1-2,1,2-g0, and

2T1-2,2,1-g0, respectively.

Section 5.9

Degree 4

In degree 4 there are 7 isomorphism classes of 2-group Belyi maps and each has

passport size 1.

Use the following code from [32] to obtain a list of these function fields in Magma.

Magma

load "config.m";

objs := [ReadTwoDBPassportChar0(f) : f in PassportFilenames(4)];

fields := [FunctionFields(s)[1] : s in objs];

All function fields are of the form Q(x)[y]/(f(x, y)) with f one of the polynomials

78

5.10 Degree 8

in (5.9.1). The subscripts indicate the passport.

f4T1-1,4,4-g0 = y4 + x− 1

f4T1-2,4,4-g1 = y4 + x3 − x2

f4T1-4,1,4-g0 = y4 − x

f4T1-4,2,4-g1 = y4 − x3 + 2x2 − x

f4T1-4,4,1-g0 = y4 − x4 + x3

f4T1-4,4,2-g1 = y4 − x2 + x

f4T2-2,2,2-g0 = y4 + (4x− 2)y2 + 1

(5.9.1)

Although every function field has constant field Q, lifting the automorphisms requires

extending the constant field to Q(ζ4) in all examples except for the Belyi map defined

by f4T2-2,2,2-g0.

Section 5.10

Degree 8

In degree 8 there are 13 isomorphism classes of 2-group Belyi maps that have size 1

passports and there are 3 size 2 passports.

All function fields are of the form Q(x)[y]/(f(x, y)) with f one of the polynomials

in (5.10.1), (5.10.2), (5.10.5), (5.10.3), (5.10.4), for size 1 passports, or (5.10.6), for

79

5.10 Degree 8

size 2 passports. The subscripts indicate the passport.

f8T1-1,8,8-g0 = y8 + x− 1

f8T1-8,1,8-g0 = y8 − x

f8T1-8,8,1-g0 = y8 − x8 + x7

(5.10.1)

f8T1-2,8,8-g2 = y8 + x5 − x4

f8T1-8,2,8-g2 = y8 − x5 + 4x4 − 6x3 + 4x2 − x

f8T1-8,8,2-g2 = y8 − x4 + 3x3 − 3x2 + x

(5.10.2)

f8T4-2,2,4-g0 = y8 + (4x− 2)y4 + 1

f8T4-2,4,2-g0 = y8 + (8x4 − 16x3 + 16x− 8)y4 + 16x8 − 128x7 + 448x6

− 896x5 + 1120x4 − 896x3 + 448x2 − 128x+ 16

f8T4-4,2,2-g0 = y8 + (−8x4 + 16x3)y4 + 16x8

(5.10.3)

f8T5-4,4,4-g2 = y8 + (1/2x3 − 3/2x2 + x)y4 + 1/16x6 − 1/8x5 + 1/16x4 (5.10.4)

80

5.10 Degree 8

f8T2-2,4,4-g1 = y8 + (8x− 4)y6 + (4x− 4)y5 + (16x2 − 31/2x+ 11/2)y4

+ (−8x+ 8)y3 + (2x2 + x+ 1)y2 + (−15x2 + 18x− 3)y

+ 4x3 − 127/16x2 + 35/8x+ 9/16

f8T2-4,2,4-g1 = y8 + (1/16x3 − 1/16x2 + 1/128x)y4 + 1/65536x2

f8T2-4,4,2-g1 = y8 + (8x− 4)y6 + (−1/2x4 − 23/2x3 + 28x2 − 16x+ 6)y4

+ (6x5 − 25x4 + 27x3 − 8x2 + 8x− 4)y2 + 1/16x8 − 9/8x7

+ 97/16x6 − 9x5 + 7/2x4 + 9/2x3 − 4x2 + 1

(5.10.5)

f8T1-4,8,8-g3 = y8 + x5 − 3x4 + 3x3 − x2

f8T1-8,4,8-g3 = y8 − x5 + 2x4 − x3

f8T1-8,8,4-g3 = y8 − x2 + x

(5.10.6)

Although every function field has constant field Q, lifting the automorphisms requires

extending the constant field to Q(ζ8) in all examples except for the those that are

covers of the Belyi map defined by f4T2-2,2,2-g0 in Section 5.9.

Use the following code from [32] to obtain a list of these function fields in Magma.

Magma

load "config.m";

objs := [ReadTwoDBPassportChar0(f) : f in PassportFilenames(8)];

fields := [FunctionFields(s)[1] : s in objs];

Perhaps the most interesting note to make in degree 8 is that it is the lowest

degree where the characteristic zero approach appears to fail. Indeed, the genus 3

passports represented in (5.10.6) have size 2, but only a single representative Belyi

81

5.11 Degree 16

map for each. In these examples, all candidate functions obtained from the ad hoc

approach in Algorithm 5.5.1 yield isomorphic function fields over Q(x), so we know

we are missing a Belyi map in each one of these passports.

The techniques in Section 5.4, however, do manage to succeed for these size 2

passports. Working over F3, using Algorithm 5.4.16, we obtain the function fields

F3(x)[y]

(y8 + 2x6 + 2x5 + 2x4 + x3 + x2 + x)
and

F3(x)[y]

(y8 + x6 + 2x3)
(5.10.7)

for the passport 8T1-8,8,4-g3, and one can check that the fields in (5.10.7) are not

isomorphic.

To obtain a list of degree 8 function fields corresponding to 2-group Belyi maps

in characteristic 3, use the following code from [32].

Magma

load "config.m";

objs := [ReadTwoDBPassport(f) : f in PassportFilenames(8)];

fields := [* *];

for s in objs do

fields cat:= FunctionFields(s);

end for;

Section 5.11

Degree 16

In degree 16 there are 55 isomorphism classes of 2-group Belyi maps with 41 distinct

passports. All passports are of size 1 except for Passport 16T8-4,4,4-g3 which

has size 3, Passports 16T1-4,16,16-g6, 16T1-16,4,16-g6, 16T1-16,16,4-g6 which

82

5.11 Degree 16

have size 2, and Passports 16T1-8,16,16-g7, 16T1-16,8,16-g7, 16T1-16,16,8-g7

which have size 4.

Algorithm 5.4.16 succeeds in characteristic 3, but the equations are too large to

write here. For an illustrative example of Algorithm 5.4.16 in action see Example

5.4.18. To obtain a list of degree 16 function fields corresponding to 2-group Belyi

maps in characteristic 3, use the following code from [32].

Magma

load "config.m";

objs := [ReadTwoDBPassport(f) : f in PassportFilenames(16)];

fields := [* *];

for s in objs do

fields cat:= FunctionFields(s);

end for;

Below are some of the characteristic zero function fields corresponding to 2-group

Belyi maps computed using Algorithm 5.5.1. At this point the equations tend to be

too big to fit on a page.

f16T1-1,16,16-g0 = y16 + x− 1 (5.11.1)

f16T13-2,2,8-g0 = y16 + (4x− 2)y8 + 1 (5.11.2)

f16T1-8,16,16-g7 = y16 + x9 − 7x8 + 21x7 − 35x6 + 35x5 − 21x4 + 7x3 − x2 (5.11.3)

83

5.11 Degree 16

f16T12-4,2,8-g2 = y16 + (−1/8x4 + 1/8x3)y12 + (1/1024x9 − 1/2048x8

− 1/256x7 + 1/256x6)y8 + (1/32768x12 − 1/32768x11)y4

+ 1/16777216x16

(5.11.4)

f16T10-4,2,4-g1 =

y16 + (−1/4x4 + 1/2x3 + 6x2 + 8x− 4)y12 + (−5x4 − 15x3 + 20x2)y10

+ (3/128x8 − 1/16x7 + 19/16x6 + 15x5 − 83/4x4

+ 15/2x3 + 34x2 − 16x+ 6)y8

+ (1/8x8 − 47/8x7 + 31/4x6 + 6x5 − 46x4 + 46x3 − 8x2)y6

+ (−1/1024x12 + 1/512x11 − 11/128x10 + 17/16x9 − 63/64x8

− 29/8x7 + 113/8x6 − 13x5 − 63/4x4 + 79/2x3 − 22x2 + 8x− 4)y4

+ (3/256x12 − 23/256x11 + 1/64x10 + 9/16x9 − 11/8x8

+ 9/8x7 + 7/4x6 − 6x5 − x4 + 17x3 − 12x2)y2

+ 1/65536x16 − 1/2048x14 + 1/512x13 + 3/1024x12 − 15/512x11

+ 9/128x10 − 3/32x9 + 35/128x8 − 9/16x7 + 3/16x6 + 3/4x4

+ 1/2x3 − 2x2 + 1

(5.11.5)

84

5.12 Degree 32

f16T8-4,4,4-g3 =

y16 + (−1/4x4 + 3/4x3 − 3/4x2 + 33/4x− 4)y12

+ (−20x3 + 40x2 − 20x)y10

+ (3/128x8 − 9/64x7 + 45/128x6 + 481/32x5 − 6899/128x4

+ 4455/64x3 − 2909/128x2 − 33/4x+ 6)y8

+ (−11/2x7 + 55/2x6 − 55x5 + 39x4 + 25/2x3 − 53/2x2 + 8x)y6

+ (−1/1024x12 + 9/1024x11 − 9/256x10 + 269/256x9 − 3287/512x8

+ 8991/512x7 − 5305/256x6 + 65/256x5 + 15527/1024x4

+ 3201/1024x3 − 1135/64x2 + 63/4x− 4)y4

+ (−5/64x11 + 5/8x10 − 35/16x9 + 27/8x8 + 1/32x7 − 65/8x6

+ 205/16x5 − 75/8x4 + 987/64x3 − 49/2x2 + 12x)y2

+ 1/65536x16 − 3/16384x15 + 33/32768x14 − 23/16384x13

− 721/65536x12 + 549/8192x11 − 2009/16384x10 − 995/8192x9

+ 63855/65536x8 − 33495/16384x7 + 78241/32768x6 − 20131/16384x5

− 63679/65536x4 + 2097/1024x3 − 157/128x2 + 1/4x+ 1

(5.11.6)

Section 5.12

Degree 32

In degree 32 there are 151 isomorphism classes of 2-group Belyi maps with 96 distinct

passports. All passports are of size 1 except for the following. All size 8 passports

are listed in (5.12.1), the size 6 passport is listed in (5.12.2), all size 4 passports are

85

5.12 Degree 32

listed in (5.12.3), the size 3 passport is listed in (5.12.4), and all size 2 passports are

listed in (5.12.5).

32S1-16,32,32-g15, 32S1-32,16,32-g15, 32S1-32,32,16-g15 (5.12.1)

32S15-8,8,8-g11 (5.12.2)

32S1-8,32,32-g14, 32S1-32,8,32-g14, 32S1-32,32,8-g14 (5.12.3)

32S6-4,4,4-g5 (5.12.4)

32S1-4,32,32-g12, 32S1-32,4,32-g12, 32S1-32,32,4-g12,

32S10-4,4,8-g7, 32S10-4,8,4-g7, 32S10-8,4,4-g7,

32S11-4,4,8-g7, 32S11-4,8,4-g7, 32S11-8,4,4-g7,

32S12-4,8,8-g9, 32S12-8,4,8-g9, 32S12-8,8,4-g9

32S16-8,16,16-g13, 32S16-16,8,16-g13, 32S16-16,16,8-g13

32S17-8,16,16-g13, 32S17-16,8,16-g13, 32S17-16,16,8-g13

(5.12.5)

To obtain a list of degree 16 function fields corresponding to 2-group Belyi maps in

characteristic 3, use the following code from [32].

86

5.12 Degree 32

Magma

load "config.m";

objs := [ReadTwoDBPassport(f) : f in PassportFilenames(32)];

fields := [* *];

for s in objs do

fields cat:= FunctionFields(s);

end for;

87

Chapter 6

Future work

As is typically the case with any work of mathematics, there is more to investigate

about 2-group Belyi maps.

Section 6.1

Implementations

One task is to compute more examples and optimize the implementations to aid in

computing permutation triples and equations. In particular, there are two possible

improvements to the implementations used here that could aid in this process.

1. Implement a way to lift Belyi maps over Fq to characteristic zero.

2. Take advantage of the iterative structure of these Belyi maps in the computation

of Picard groups.

Another task is to extend these techniques to deal with p-group Belyi maps for p ≥ 3

and non-Galois Belyi maps.

88

6.2 Applications

Section 6.2

Applications

Besides pushing the computations and generalizing the implementations, there is

the more interesting question of how to apply these computations. Chapter 4, for

example, provides evidence that 2-group Belyi maps appear to have small refined

passports. This might suggest that the moduli fields of 2-group Belyi maps are close

to being abelian. With Gross’s conjecture in mind, we pose the following question.

Question 6.2.1. Are the moduli fields of 2-group Belyi maps always solvable?

More work is needed to conjecture on this question, but either answer is interest-

ing. Since the moduli field of a 2-group Belyi map is ramified only at 2, a nonsolvable

moduli field would be an example of a nonsolvable number field ramified only at 2.

To illustrate the type of computation that would be helpful in answering Question

6.2.1, consider the permutation triple in (6.2.2) provided by David P. Roberts.

σa0 = (1, 20, 16, 28, 7, 21, 11, 32, 4, 17, 14, 26, 5, 24, 9, 29)

σb0 = (2, 19, 15, 27, 8, 22, 12, 31, 3, 18, 13, 25, 6, 23, 10, 30)

σa1 = (1, 11, 3, 10)(2, 12, 4, 9)(5, 14, 8, 15, 6, 13, 7, 16)

σb1 = (17, 27, 23, 29, 19, 26, 21, 31, 18, 28, 24, 30, 20, 25, 22, 32)

σ0 = σa0σ
b
0

σ1 = σa1σ
b
1

σ∞ = (σ1σ0)
−1

(6.2.2)

The triple defined in (6.2.2) is a non-Galois permutation triple corresponding to a

89

6.2 Applications

2-group Belyi map of degree 220 with refined passport size 16. Modifying our imple-

mentations to compute equations for these non-Galois triples could potentially shed

light on an answer to Question 6.2.1.

Another interesting application of these computations would be to use the iterative

structure of 2-group Belyi maps to explain the splitting of passports.

Lastly, even if all moduli fields of 2-group Belyi maps end up being solvable, there

is still the possibility of finding a nonsolvable field by computing 2-torsion fields as

described in Section 1.1. Torsion fields could be computed using techniques in [14, 30].

Torsion fields could also be computed using Christian Neurohr’s implementation of

Riemann surfaces in [10] which will be available in a future release.

90

Bibliography

[1] Sybilla Beckmann, Ramified primes in the field of moduli of branched coverings

of curves, J. Algebra 125 (1989), no. 1, 236–255. MR 1012673

[2] G. V. Belyi, On extensions of the maximal cyclotomic field having a given clas-

sical Galois group, J. Reine Angew. Math. 341 (1983), 147–156. MR 697314

[3] Yakov Berkovich, Groups of prime power order. Vol. 1, De Gruyter Expositions

in Mathematics, vol. 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, With

a foreword by Zvonimir Janko. MR 2464640

[4] Yakov Berkovich and Zvonimir Janko, Groups of prime power order. Vol. 2, De

Gruyter Expositions in Mathematics, vol. 47, Walter de Gruyter GmbH & Co.

KG, Berlin, 2008. MR 2464641

[5] , Groups of prime power order. Volume 3, De Gruyter Expositions in

Mathematics, vol. 56, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. MR

2814214

[6] , Groups of prime power order. Vol. 4, De Gruyter Expositions in Math-

ematics, vol. 61, De Gruyter, Berlin, 2016. MR 3445161

91

BIBLIOGRAPHY

[7] Yakov G. Berkovich and Zvonimir Janko, Groups of prime power order. Vol. 5,

De Gruyter Expositions in Mathematics, vol. 62, De Gruyter, Berlin, 2016. MR

3445342

[8] , Groups of prime power order. Vol. 6, De Gruyter Expositions in Math-

ematics, vol. 65, De Gruyter, Berlin, 2018. MR 3793194

[9] Wieb Bosma and John Cannon (eds.), Discovering mathematics with Magma,

Algorithms and Computation in Mathematics, vol. 19, Springer-Verlag, Berlin,

2006, Reducing the abstract to the concrete. MR 2265375

[10] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra sys-

tem. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265,

Computational algebra and number theory (London, 1993). MR MR1484478

[11] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics,

vol. 87, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 origi-

nal. MR 1324339

[12] Pete L. Clark and John Voight, Algebraic curves uniformized by congruence sub-

groups of triangle groups, Trans. Amer. Math. Soc. 371 (2019), no. 1, 33–82. MR

3885137

[13] Kevin Coombes and David Harbater, Hurwitz families and arithmetic Galois

groups, Duke Math. J. 52 (1985), no. 4, 821–839. MR 816387

[14] Edgar Costa, Nicolas Mascot, Jeroen Sijsling, and John Voight, Rigorous compu-

tation of the endomorphism ring of a Jacobian, Math. Comp. 88 (2019), no. 317,

1303–1339. MR 3904148

92

BIBLIOGRAPHY

[15] Lassina Dembélé, A non-solvable Galois extension of Q ramified at 2 only, C. R.

Math. Acad. Sci. Paris 347 (2009), no. 3-4, 111–116. MR 2538094

[16] Lassina Dembélé, Matthew Greenberg, and John Voight, Nonsolvable number

fields ramified only at 3 and 5, Compos. Math. 147 (2011), no. 3, 716–734. MR

2801398

[17] Luis V. Dieulefait, A non-solvable extension of Q unramified outside 7, Compos.

Math. 148 (2012), no. 3, 669–674. MR 2925394

[18] David S. Dummit and Richard M. Foote, Abstract algebra, third ed., John Wiley

& Sons, Inc., Hoboken, NJ, 2004. MR 2286236

[19] H. M. Farkas and I. Kra, Riemann surfaces, second ed., Graduate Texts in Math-

ematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765

[20] Dorian Goldfeld, Jay Jorgenson, Peter Jones, Dinakar Ramakrishnan, Ken-

neth A. Ribet, and John Tate (eds.), Number theory, analysis and geometry,

Springer, New York, 2012, In memory of Serge Lang. MR 2867938

[21] Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1,

London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cam-

bridge, 1997, With an English translation on pp. 243–283, pp. 5–48. MR 1483107

[22] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg,

1977, Graduate Texts in Mathematics, No. 52. MR 0463157

[23] D. F. Holt, A computer program for the calculation of a covering group of a finite

group, J. Pure Appl. Algebra 35 (1985), no. 3, 287–295. MR 777260

93

BIBLIOGRAPHY

[24] , The mechanical computation of first and second cohomology groups, J.

Symbolic Comput. 1 (1985), no. 4, 351–361. MR 849042

[25] Bonnie Sakura Huggins, Fields of moduli and fields of definition of curves, Pro-

Quest LLC, Ann Arbor, MI, 2005, Thesis (Ph.D.)–University of California,

Berkeley. MR 2708514

[26] Gareth Jones and Manfred Streit, Galois groups, monodromy groups and carto-

graphic groups, London Mathematical Society Lecture Note Series 243 (1997),

25–66.

[27] Michael Klug, Michael Musty, Sam Schiavone, and John Voight, Numerical cal-

culation of three-point branched covers of the projective line, LMS J. Comput.

Math. 17 (2014), no. 1, 379–430. MR 3356040

[28] Bernhard Köck, Belyi’s theorem revisited, Beiträge Algebra Geom. 45 (2004),

no. 1, 253–265. MR 2070647

[29] Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Mono-

graphs in Mathematics, Springer, Berlin, 2018, Second edition [MR1711577].

MR 3822366

[30] Nicolas Mascot, Computing modular Galois representations, Rend. Circ. Mat.

Palermo (2) 62 (2013), no. 3, 451–476. MR 3118315

[31] Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in

Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR

1326604

94

BIBLIOGRAPHY

[32] Michael Musty, 2-group dessins, https://github.com/michaelmusty/

2GroupDessins, 2019.

[33] Michael Musty, Sam Schiavone, Jeroen Sijsling, and John Voight, A database of

Belyi maps, Proceedings of the Thirteenth Algorithmic Number Theory Sympo-

sium, Open Book Ser., vol. 2, Math. Sci. Publ., Berkeley, CA, 2019, pp. 375–392.

MR 3952023

[34] David P. Roberts, Fractalized cyclotomic polynomials, Proc. Amer. Math. Soc.

135 (2007), no. 7, 1959–1967. MR 2299467

[35] , Nonsolvable polynomials with field discriminant 5A, Int. J. Number The-

ory 7 (2011), no. 2, 289–322. MR 2782660

[36] Michael Rosen, Number theory in function fields, Graduate Texts in Mathemat-

ics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657

[37] Jean-Pierre Serre, Abelian l-adic representations and elliptic curves, McGill Uni-

versity lecture notes written with the collaboration of Willem Kuyk and John

Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0263823

[38] , Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer],

(1973), 319–338. Lecture Notes in Math., Vol. 317. MR 0466020

[39] , Topics in Galois theory, second ed., Research Notes in Mathematics,

vol. 1, A K Peters, Ltd., Wellesley, MA, 2008, With notes by Henri Darmon. MR

2363329

95

https://github.com/michaelmusty/2GroupDessins
https://github.com/michaelmusty/2GroupDessins

BIBLIOGRAPHY

[40] Tanush Shaska, Determining the automorphism group of a hyperelliptic curve,

Proceedings of the 2003 International Symposium on Symbolic and Algebraic

Computation, ACM, New York, 2003, pp. 248–254. MR 2035219

[41] J. Sijsling and J. Voight, On computing Belyi maps, Numéro consacré au

trimestre “Méthodes arithmétiques et applications”, automne 2013, Publ. Math.

Besançon Algèbre Théorie Nr., vol. 2014/1, Presses Univ. Franche-Comté, Be-

sançon, 2014, pp. 73–131. MR 3362631

[42] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Grad-

uate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR

1312368

[43] , The arithmetic of elliptic curves, second ed., Graduate Texts in Math-

ematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094

[44] David Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2)

6 (1972), 29–38. MR 0322165

[45] Henning Stichtenoth, Algebraic function fields and codes, second ed., Graduate

Texts in Mathematics, vol. 254, Springer-Verlag, Berlin, 2009. MR 2464941

96

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Main results
	Navigation

	Background on Belyi maps
	Belyi maps and Galois Belyi maps
	Permutation triples and passports
	Triangle groups
	Fields of moduli and fields of definition

	Group theory
	2-groups
	Computing group extensions
	An iterative algorithm to produce generating triples
	Results of computations

	Fields of definition of 2-group Belyi maps
	Refined passports
	Computing refined passports

	Computing equations
	Quadratic extensions of number fields
	Curves and algebraic function fields
	Quadratic extensions of function fields
	An algorithm over Fq
	An implementation over Qal
	Results of computations
	Naming conventions for database examples
	Degree 2
	Degree 4
	Degree 8
	Degree 16
	Degree 32

	Future work
	Implementations
	Applications

	References

